
ET GeoWizards is a set of powerful functions that will help the ArcGIS users to manipulate data with easy. It

offers a lot of functionality not available as standard in ArcGIS. It also enables the ArcGIS users with ArcView

(ArcGIS Basic) licenses to perform some data processing functions currently available only in ArcEditor

(ArcGIS Standard) and ArcInfo (ArcGIS Advanced).

The main target of the software are the ArcView license holders, but it will be an asset for everyone using

ArcEditor and even ArcInfo

The functionality of ET GeoWizards is available in two different ways

Via the user friendly wizard type interface

Via a set of tools for Arc Toolbox (ArcGIS 9.0 or above) which can be used in the Model Builder,

Command Line or in Python scripts.

Until registered ET GeoWizards runs in DEMO mode.

The Demo mode has the following limitations

Many of the features are free - do not have any restrictions with the DEMO version. See ET

GeoWizards - free features for a list

The rest of the functions have restriction of 100 features in the layer to be processed

See How to Register ET GeoWizards for registration information

Installation Instructions

Note that you have to be logged as an Administrator on the machine you are installing ET GeoWizards

Important note: If you have ET GeoWizards installed and plan to uninstall ArcGIS you MUST first

uninstall ET GeoWizards

Close ArcMap

If you have a previous version of ET GeoWizards installed, uninstall it first.

Make sure that you have the sub-version of ET GeoWizards appropriate for your ArcGIS version

Unzip ETGeoWizardsXX.zip - two files will be extracted from the archive:

setup.exe

ETGeoWizardsXX_YY_Setup.msi

Run setup.exe - a simple installation wizard will guide you through the process.

A new program group with 2 items will be created

ET GeoWizards User Guide

Readme

If you start ArcMap the ET GeoWizards toolbar should be already loaded.

For pre ArcGIS 10 - Go to View ==> Toolbars and select the toolbar.

For ArcGIS 10 - Go to Customize ==>Toolbars and select the toolbar.

Note:

ET GeoWizards runs in DEMO mode until registered.

The Demo mode has the following limitations

Some of the features are free - do not have any restrictions with the DEMO version. See

ET GeoWizards - free features for a list

All the Surface functions can work with layers with up to 300 features

The rest of the functions have restriction of 100 features in the layer to be processed

See How to Register ET GeoWizards for registration information

How to use ET GeoWizards

A. Via the User Interface

1. Clicking on the button will introduce the ET GeoWizards main dialog

2. Select the appropriate group of functions in the navigation panel on the left.

3. Select the function required.

4. The appropriate topic of the User Guide will be displayed in the Help Window

5.To run the selected function click the GO button or the Run icon next the the function

name. You can also double click the function name.

6. Follow the Wizard

Note:

Read the messages in the message box on the right side of the wizards. There will be a

short description of the current function, it will report for incorrect inputs or give some

additional instructions

B. In ArcToolbox

The ET GeoWizards tools can be used as any standard geoprocessing tool - from ArcToolbox, in the

Model Builder or Python scripts.

Load all ET GeoWizards tools:

Right-click the ArcToolbox folder inside the ArcToolbox window and click Add Toolbox.1.

Navigate to the folder where ET GeoWizards is installed and select ETGeoWizards.tbx file2.

Click Open.3.

Load a tool into your own toolbox or toolset:

Right-click the toolbox or toolset where you want to add system tools, point to Add, and click Tool.1.

In the dialog find and expand ET GeoWizards toolbox and toolsets in it. Check the tools you would

like to add to your toolbox or toolset. If you check the toolbox, all tools within the toolbox will be

added. If you check a toolset within the toolbox, all tools within the toolset will be added.

2.

Click OK.3.

Notes:

Since the usage of the ET GeoWizards tools is exactly the same as the standard tools

provided with ArcGIS, we highly recommend you to have a look at "Geoprocessing in ArcGIS"

in the desktop help.

The usage of the ToolBox tools is described at the bottom of the topic for each ET

GeoWizards function. Many of the help topics have also Python script examples.

C. In .NET customizations

Copyright © Ianko Tchoukanski

How to use ET GeoWizards functionality in .NET

Most of the functions of ET GeoWizards (starting from version 11.2) can be used in custom applications (stand alone, ArcGIS Add - Ins, custom controls). The syntax of each ET GeoWizards function is described in the main topic of the

function ==> .NET implementation. See also the utility functions for the .NET implementation.

Quick start - VB.NET example for stand alone application

Prerequisites

ArcGIS - installed and licensed

ArcObjects SDK for NET Framework - installed

Microsoft Visual Studio

ET GeoWizards 11.2 and above - installed and registered

Start Visual Studio1.

Go to File ==> New ==> Project

In the dialog go to Installed Templates ==> Visual Basic ==> ArcGIS ==> Extending ArcObjects and select Windows Application (Desktop)

Give a name to your project and click OK

In the ArcGIS Project Wizards that will open select your product (Basic, Standard or Advanced) and click Finish

2.

Go to Project ==> Properties ==> References:

Add reference ==> .NET ==> find ESRI.ArcGIS.Geodatabase and select it ==> Click OK

Add reference ==> Browse ==> navigate to the installation folder of ET GeoWizards and select ETGeoWizards112.dll. Make sure that "Copy Local" is set to true in the reference properties.

3.

Save the Assembly and Build it.4.

Create a button on your form and name it Build Thiessen5.

Double click on the button to start editing the code6.

Paste the code below 7.

Imports ETGeoWizards112

Imports ESRI.ArcGIS.Geodatabase

Public Class Form1

 Private Sub PolylineToPoints_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles PolylineToPoints.Click

 Try

 Dim et As New ETGWCore

 'set the full name of the input dataset.

 Dim sInputName As String = "c:\test\polylines.shp"

 'set the name for the output datset. It should not exist.

 Dim sOutName As String = "c:\test\vertices.shp"

 'get the feature class from the input name.

 Dim pInFC As IFeatureClass = et.FeatureClassFromPath(sInputName)

 'run the Polyline To Points function. See the topic in the user guide for description of the parameters and options available

 Dim pOutFC As IFeatureClass = et.PolylineToPoints(pInFC, sOutName, "Vertex")

 If Not pOutFC Is Nothing Then

 MsgBox("Vertices created!")

 Else

 MsgBox("Error! See log file for details.")

 End If

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 End Sub

End Class

Note: Some of the functions will need two additional files located in the EXE folder. Find the following files in the installation folder of ET GeoWizards and copy them in the folder of your EXE

ETtApp.exe

ETtMod.dll

Copyright © Ianko Tchoukanski

How to register ET GeoWizards

A. Single use (fixed) license

The registration process involves three steps:

Visit ET GeoWizards page on ShareIt.com and purchase the software. You will receive a reference

number for your order.

1.

On the ET GeoWizards Toolbar or ET GeoWizards Main Dialog go to Help ==> Request License

Key button. Fill the small form - all the fields are required.

User Name

Company

ShareIt reference number (see Step 1)

After filling the form there are two options to chose from:

Create Key Request File will write all the information to a file (*.etr). Send this file to

register@ian-ko.com and in maximum 24 hours you will receive a license key that will

unlock the full version

Send Key Request via e-mail. This option will open you default e-mail program with all

necessary information. You just have to click the SEND button

Important note:

Do not change anything in the request file or the body of the generated message. It will cause the

registration process to fail.

2.

When you receive the Key File , save the attachment (*.etw file) to you hard disk. Click on Register

button (Main Dialog ==> About Tab). In the form click on Load Key File button. Select the received

file. The ET GeoWizards dialog will close. When opened next time the program will be registered.

3.

Important note:

Do not change anything in the Key File. It will cause the registration process to fail.

B. Concurrent license

ET LicenseManager should be installed on a PC on your network

Contact your system administrator and get the following information:

The Name or IP address of the PC where the ET LicenseManager is installed

 The TCP port on which the ET License Manager communicates

1.

On the ET GeoWizards toolbar click Help ==> Connect To License Server.2.

In the dialog fill

License Server - fill the network name or the IP Address of the license server

TCP Port - fill the port number

3.

Click on the Test License Server button4.

If a connection to the license server is established, click OK to save the settings. You are ready to

work.

5.

If the test fails - contact your system administrator.6.

mailto:register@ian-ko.com

Copyright © Ianko Tchoukanski

ET GeoWizards and Projections

Some short definitions(compiled from ArcGIS desktop help)

Projection - The two-dimensional representation of the three-dimensional space.

Coordinate System - a reference system for measurements defined by the projection

Geographic Coordinate System - measures locations in degrees - latitude and longitude.

Since latitude and longitude are angular measurements they are not suitable for measuring

distances. The major parameter of a Geographic Coordinate System is its datum

Projected Coordinate System - uses a projection to transform the latitude and longitude to

X and Y coordinates and makes the linear measurements more accurate. Each projected

coordinate system is based on a Geographic Coordinate System

Spatial Domain - the range and precision of coordinates that can be stored in a feature dataset

Spatial Reference - contains information for the coordinate system and spatial domain extent for a

feature dataset

Projections of the data (for feature classes the projection information is stored in the feature classname.prj

file)

Projected data - the data is explicitly projected in a Projected Coordinate System

Unprojected data - the data is in a Geographic Coordinate System

Data with unknown projection - the projection information (in the case of feature classes - "feature

classname.prj") is missing

Projections of the dataframe (View)

No projection - the data is displayed as is

Assigned projection - the data is reprojected on the fly and displayed in the data frame's projection.

ET GeoWizards works with data in any projection and view frame in any projection

Notes:

All the wizards preserve the Spatial Reference of the input data source. The assumption is that if

the user keeps a dataset in certain projection he has reasons for that, and all the products of this

data set must be in the same projection.

When a distance input is required (Fuzzy tolerance, Dangling tolerance etc.) best results will be

achieved if the data is projected in a specific projection and the data frame does not have projection

(or has the same projection as the data), because the tolerance is compared directly with the data.

The Wizards will not work if the data frame contains one or more layers that have projection with

Geographic Coordinate System different from the Geographic Coordinate System of the data

frame's projection. ArcMap gives a warning in such a case, but allows it.

Although possible, it is not recommended to manipulate Unprojected data (data in a Geographic

Coordinate System) for reasons mentioned above

If the projection information is missing, the data can be manipulated only in a data frame with no

projection assigned.

Copyright © Ianko Tchoukanski

ET GeoWizards and Geodatabases

General

ArcGIS supports three types of Geodatabases:

Personal geodatabase

SDE

File geodatabase (ArcGIS 9.2 and above)

ET GeoWizards writes its outputs as stand alone feature classes in Personal Geodatabases (PGDB) and File

Geodatabases (FGDB).

Feature Datasets

The feature classes of a feature dataset might participate in Topologies, Geometric networks, etc. The

results of 99% of the functions of ET GeoWizards are written into a new dataset (feature class or shapefile).

In many cases the result is not final - it goes trough several procedures before the final dataset is derived. To

avoid placing feature classes into feature datasets that have been structured to do something, we on purpose

have disabled ET GeoWizards to output in feature datasets. It is very easy to copy the result to a feature

dataset after the user is sure that the desired result is obtained. One can always make a model that will use

the ET GeoWizards tools and just add at the end the standard "Feature Class To Feature Class" tool to

direct the output to a feature dataset.

Temporary feature classes.

Many of the functions of ET GeoWizards perform complex spatial operations and in the process need to

create one or more intermediate datasets. These temporary datasets are not written in the users

geodatabase, but in a special geodatabases. ET GeoWizards creates two temporary geodatabases - a

PGDB and a FGDB. Depending on the type of the selected output the intermediate feature classes are stored

in one of these temporary databases. The temporary databases are stored in a location specified by the user.

The location (temp folder) can be set using the ET GeoWizards Main Dialog ==> About Tab ==> Settings). If

the temp folder has not be set Et GeoWizards sets it to "c:\temp\ET_Temp" The names of the temp

geodatabases are:

"et_tempGDB.mdb" - for storing temporary PGDB feature classes.

"et_tempFDB" - for storing temporary FGDB feature classes.

Maintenance of the temp geodatabases

All functions are designed to maintain the temporary geodatabases by

Removing the intermediate feature classes after completion

Compacting the databases

In some cases however some of the functions cannot delete the intermediate datasets. This might cause the

size of the temporary geodatabases to grow after long use of the software. Large size of the temporary

geodatabases might cause decreased performance of some of the functions of ET GeoWizards. The easiest

way to avoid such problems is simply to delete the temporary geodatabases on regular basis.

ET GeoWizards Toolbar

The toolbar contains:

The button that opens the main dialog of the software -

The Help Menu which has the following items depending on the version

Fixed Version

User Guide - opens the documentation of ET GeoWizards

Settings - opens dialog which display the current temp folder and allows the user

to change the temp folder.

View Log File - opens the log file where are recorded all the activities of the

functions of ET GeoWizards. It is recommended that this file is cleaned from time

to time.

About - opens a dialog that states the version and the build date of ET

GeoWizards as well as the registration status of the software

Request License Key - Use this after purchasing a license to send registration

information to register@ian-ko.com

Register - Use this to load the license key which you will receive after sending the

registration information

Purchase Online - will open the default WEB Browser with the order page of ET

GeoWizards.

Concurrent Version

User Guide - opens the documentation of ET GeoWizards

Settings - opens dialog which display the current temp folder and allows the user

to change the temp folder.

View Log File - opens the log file where are recorded all the activities of the

functions of ET GeoWizards. It is recommended that this file is cleaned from time

to time.

About - opens a dialog that states the version and the build date of ET

GeoWizards as well as the registration status of the software

Connect To License Server - opens the dialog that allows the user to connect to

the license server.

Release License - releases the license checked out to make it available for other

users.

mailto:register@ian-ko.com

Copyright © Ianko Tchoukanski

ET GeoWizards Main Dialog

The Main Dialog of ET GeoWizards gives access to all the functions of the software.

Selecting the tab for specific category of functions will display a list of all functions in this category. Next to each function there is an icon indicating the status of the

function

 indicates that the function is available with no limitations

 indicates that the software is not registered and if you run the function the limitations of the unregistered software apply

 appears when a licensed (or free) function is selected. Clicking on the icon will execute the function.

 appears when a non-licensed function is selected. Clicking on the icon will execute the function with the applicable to the unregistered software

limitations.

On the registered software only and icons should appear.

Clicking on the GO button will execute the selected function.

The User Guide is embedded in the main dialog - whenever you select a function, the Help Window will display the appropriate help topic. You can use the Help

button to hide or show the Help Window.

The View Log button displays the entries recorded in the ET GeoWizards log file. The dialog allows deleting the current entries. It is recommended to clean the log

file on regular intervals

The settings button opens the settings dialog of ET GeoWizards . On this dialog you can view the current temp folder (where all intermediate datasets created by the

functions of ET GeoWizards are stored) or set a new folder to be used for such purposes. ET GeoWizards cleans the temp folder automatically, but it is a good

practice to delete all the contents of this folder from time to time.

Copyright © Ianko Tchoukanski

Near Feature

Go to ToolBox Implementation Go to .NET Implementation

Calculates the distance for each feature of the Input dataset to the closest feature from the Near dataset. In the attribute table of the output the distance is recorded together with the ID of the closest feature.

Inputs:

Input Dataset - Point, Multipoint, Polyline or Polygon

Near Dataset - Point, Multipoint, Polyline or Polygon

Search tolerance - the maximum distance to search for features in the near layer in the units of the spatial reference of the Input Dataset

Outputs:

New feature class. The attribute table of the resulting feature class will have three new fields

[ET_Dist] - the distance from the input feature to the closest feature from the near layer

[ET_Closest] - the ID of the closest feature from the near layer

Notes:

If the distance from an input feature to the closest feature from the distance layer is larger than the Search Tolerance then the [ET_Dist] and [ET_Closest] will have a value of -1

If an input feature intersects several features from the near dataset an arbitrary feature from the intersecting near features will be assigned as closest and the distance will be assigned to 0.

If the input layer and the near layer have different Spatial References the distance is calculated in the Spatial Reference of the data input dataset.

The spatial references of the Input and Near dataset must have the same geographic coordinate system.

Examples:

Input Dataset - Polygons

Near Dataset - Polylines

Input Dataset - Polylines

Near Dataset - Polygons

Input Dataset - Points

Near Dataset - Polylines

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPNearFeature<input_dataset> <Near_dataset> <out_feature_class> <search_tolerance>

Parameters

Expression Explanation

<input_dataset> A Point, Multipoint, Polyline or Polygon feature class or feature layer.

<Near_dataset> A Point, Multipoint, Polyline or Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<search_tolerance> A Double representing the Search tolerance (in the units of the spatial reference of the input dataset) to be used

Scripting syntax

ET_GPNearFeature(input_dataset, Near_dataset, out_feature_class, search_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

NearFeature(pInFC As IFeatureClass, pNearFC As IFeatureClass, sOutFName As String, dSearchTol As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Allocation

Go to ToolBox Implementation Go to .NET Implementation

Allocates a set of demand points (Customers) to user specified number of supply points (Facilities) out of a Facilities point dataset based on the Euclidian

distance between the Customers and Facilities. In other words the function selects N Facilities out of K candidates to service a set of M Customer locations in such a

way that each Customer is allocated to a single Facility (based on Euclidean distance) and the total distance between the Customers and selected Facilities is

minimized.

The function uses heuristic vertex substitution algorithm modified from Teitz and Bart (1968) and can handle comparatively large problems (Number of Customers *

Number Facilities < 5 Million)

Inputs:

Point feature layer representing the Facilities (Centers).

Facility name field (optional) - the values in this field are used to identify the facilities. If the field is not specified the FID will be used as a name

Facility type field (optional) - the values of this field indicate whether a specific facility must be included in the selected set of facilities. Values of "1",

"Required", "Existing" will force the inclusion of the Facility in the selected set of facilities. If the field is not specified all facilities will be considered as equal in

the selection algorithm.

Point feature layer representing the customers (demand points) that need to be allocated to the facilities.

Customer name field (optional) - the values in this field are used to identify the facilities. If the field is not specified the FID will be used as a name

Number of facilities to be selected.

Cutoff distance (optional) - the maximum distance between a Facility and a Customer to be used. Note that some customers might not be allocated if too

small cutoff distance is used.

Outputs:

New Point feature class containing only the selected facilities. The attribute table of the resulting feature class will have the following fields

FacilityID - The original FID of the selected facility

Facility - The value in the user specified Name field of the selected facility

Type - the type of the facility - Selected or Fixed (if the facility was indicated as fixed in the input facilities dataset.

Num_Alloc - Number of customers allocated to this facility

Max_Dist - The distance to the farthest customer from this facility.

Total_Dist - The sum of the distances to all allocated cutomers.

New Polyline feature class with lines linking selected facilities to allocated to them customers. The attribute table of the resulting feature class will have the

following fields

FacilityID - The original FID of the selected facility

CustomerID - The original FID of the customer

Facility - The value in the user specified Name field of the selected facility

Customer - The value in the user specified Name field of the customer

ET_Dist - The distance between the selected facility and the allocated customer

Illustration:

Input Facilities and Customers - No required facilities Result (Selected facilities in green)

Input Facilities and Customers - Two required facilities Result (Selected facilities in green)

Notes:

The output spatial reference will be the one of the Facilities dataset

The function has a restrictions and should not be applied if Number of Customers * Number Facilities > 5 Million

References:

M.B. Teitz and P. Bart, Heuristic methods for estimating the generalized vertex median of a weighted graph. Gpns. Res. 16,

955-961 (1968).

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPAllocate <facilities_dataset> {facility_name_field} {facility_type_field} <customers_dataset> {customer_name_field} <out_links_feature_class>

<out_facilities_feature_class> <number_facilities> {Cutoff_distance}

Parameters

Expression Explanation

<centers_dataset> A Point feature class or feature layer - the candidate facilities.

 {facility_name_field} A String representing a field name - the values in this field are used to identify the facilities.

 {facility_type_field} A String representing a field name - the values in this field are used to identify the facilities.

<customers_dataset> A Point feature class or feature layer - the Customers (demand points).

 {customer_name_field} A String representing a field name - the values in this field are used to identify the customers.

<out_links_feature_class> A String - the full name of the output link feature class (A feature class with the same full name should not exist)

<out_facilities_feature_class> A String - the full name of the output selected facilities feature class (A feature class with the same full name should not exist)

<number_facilities> An integer - the number of facilities to be selected

{Cutoff_distance} A number - the maximum distance between a Facility and a Customer to be used.

Scripting syntax

EET_GPAllocate (facilities_dataset, facility_name_field, facility_type_field, customers_dataset, customer_name_field, out_links_feature_class,

out_facilities_feature_class, number_facilities, Cutoff_distance

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

Allocate(pFacFC As IFeatureClass, pCustFC As IFeatureClass, sOutLinkFN As String, sOutFacFN As String, iNumFac As Integer, Optional sFacName As String = "",

Optional sFacType As String = "", Optional sCustName As String = "", Optional dCutOff As Double = 1000000000) As IFeatureClass

Copyright © Ianko Tchoukanski

Create Concave Hull

Go to ToolBox Implementation Go to .NET Implementation

The Concave Hull function creates a polygon that represents the area occupied by a set of data points.

The resulting polygon might be concave or convex

Convex Non Convex (Concave)

A Concave hull describes better the shape of the point cloud than the convex hull

Convex Hull Concave Hull

Many solutions are possible for the same input data. The result depends on the user defined distance

threshold. The larger the threshold, the closer the resulting polygon will be to the Convex Hull.

Source Data Convex Hull

Concave Hull 1 Concave Hull 2

Inputs:

A feature layer (Point, Polyline, Polygon)

Distance threshold - in the units of the spatial reference of the input dataset

Outputs:

New polygon feature class.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCreateConcaveHull <input_dataset> <out_feature class> <distance_threshold>

Parameters

Expression Explanation

<input_dataset> A Point, Multipoint, Polyline or Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<distance_threshold> A Double representing the threshold for creating a concave hull - in the units of the spatial

reference of the input dataset

Scripting syntax

ET_GPConvexHull (input_dataset,out_feature class, distance_threshold)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateConcaveHull(pInFC As IFeatureClass, sOutFName As String, dDistanceTolerance As Double) As

IFeatureClass

Copyright © Ianko Tchoukanski

Build Convex Hull

Go to ToolBox Implementation Go to .NET Implementation

Builds the Convex Hull of the features of a layer

Convex hull is a polygonal area that is of smallest length and so that any pair of points within the area have the line segment

between them contained entirely inside the area.

Convex Non Convex (Concave)

Defining the convex Hull of a set of points is useful, for example in the case of enclosing the points, using a fence of shortest

total length.

Source Data Convex Hull

While in general the Convex Hull is good to describe the shape of the input data points, in many cases a polygon that

describes better the region occupied by the point cloud is needed. See the Create Concave Hull function

Convex Hull Concave Hull

Inputs:

A feature layer (Point, Polyline, Polygon)

Outputs:

New polygon feature class.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPConvexHull <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax

ET_GPConvexHull (input_dataset,out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ConvexHull(pInFC As IFeatureClass, sOutFName As String, dMaxGap As Double, Optional bAvoidLoops As Boolean = False)

As IFeatureClass

Copyright © Ianko Tchoukanski

Create Cluster Polygons

Go to ToolBox Implementation Go to .NET Implementation

Delineates cluster polygon for the input points based on user specified cluster distance.

Inputs:

A feature layer (Point, Polyline, Polygon)

Cluster Tolerance - in the units of the spatial reference of the input dataset

Holes/No Holes option

Outputs:

New polygon feature class.

Examples:

Source Points

Cluster Polygons 1 Cluster Polygons 1 overlaid with the source points

Cluster Polygons 2 Cluster Polygons 2 overlaid with the source points

Cluster Polygons 3 (No Holes option selected) Cluster Polygons 3 overlaid with the source points

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCreateClusterPolygons<input_dataset> <out_feature class> <cluster_distance><remove_holes_from_polygons>

Parameters

Expression Explanation

<input_dataset> A Point, Multipoint, Polyline or Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<cluster_distance> A Double representing the maximum distance between the points within a cluster - in the units of

the spatial reference of the input dataset

<remove_holes_from_polygons> A Boolean - If true, the resulting polygons will not contain holes.

Scripting syntax

ET_GPCreateClusterPolygons(input_dataset,out_feature class, cluster_distance, remove_holes_from_polygons)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\clusters"

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx");

arcpy.gp.ET_GPCreateClusterPolygons(input_dataset, result, 10.00, true)

.NET implementation

(Go to TOP)

CreateClusterPolygons(pInFC As IFeatureClass, sOutFName As String, dClusterTolerance As Double, Optional bRemoveHoles As

Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Build Thiessen Polygons

Go to ToolBox Implementation Go to .NET Implementation

Builds Thiessen Polygons from a feature layer

Thiessen (Voronoi) polygons define individual areas of influence around each of a set of points. Thiessen polygons are

polygons whose boundaries define the area that is closest to each point relative to all other points. They are mathematically

defined by the perpendicular bisectors of the lines between all points

Inputs:

A feature layer (Point, Polyline, Polygon)

Outputs:

New polygon feature class.

If Attach attributes option is selected, the attributes of the source features are transferred to the new attribute

table.

Notes :

The process goes through several steps

Collects the points from a point layer (vertices if the source is a polyline or polygon layer)

Clean duplicate points

Generates Convex Hull

Creates a TIN structure

Generates perpendicular bisectors for each tin edge.

Builds the Thiessen polygons

Clips the Thiessen polygons feature class with the convex hull.

To achieve best results when creating Thiessen Polygons from a polyline layer use Generalize Polylines Wizard or

Densify Polyline Wizard (before running the Thiessen Polygons procedure) in order to remove unnecessary points or

add points to the long straight segments

By default the Thiessen polygons are clipped to the extents of the input features. There is an option to buffer the

extents rectangle before clipping with it.

The resulting feature class can be clipped (Clip Layer Wizard) with any polygon layer to mach the shape of this layer.

If the source is a polyline or polygon layer, only the attributes of the first feature found inside each Thiessen polygon

will be transferred.

The function should work with no problems on datasets with up to 2 million points.

Examples of use:

Defining trade areas

From a set of soil sampling points to define non overlapping polygons for each soil type

Example:

Point Collection Convex Hull Thiessen Polygons

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBuildThiessen <input_dataset> <out_feature class> {clip_buffered} {buffer_distance} {attach_attributes}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

{clip_buffered} A Boolean indicating whether the output will be restricted to the extent rectangle of the input features

(False) or will be extended with the specified buffer distance (True)

{buffer_distance} A Double setting the the distance with which the extent rectangle of all the input features will be

buffered (in the units of the input dataset) to be used if the {clip_buffered} is True. If {clip_buffered} is

False this parameter is ignored

{attach_attributes} A Boolean indicating whether the attributes of the original features will be transferred to the resulting

thiessen polygons

Scripting syntax

ET_GPBuildThiessen (input_dataset, out_feature class, clip_buffered, buffer_distance, attach_attributes)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BuildThiessen(pInFC As IFeatureClass, sOutFName As String, Optional dBuffer As Double = 0, Optional bAttach As Boolean

= True) As IFeatureClass

Copyright © Ianko Tchoukanski

Spider Diagram

Go to ToolBox Implementation Go to .NET Implementation

Creates a polyline feature class representing the shortest distance between centers (point dataset) and Destinations (Point,

Polyline or Polygon datasets). The Destinations are allocated to the closest Center.

Inputs:

Point feature layer representing the Centers

Point, Polyline or Polygon layer representing the destinations

Cutoff distance - the maximum distance between a Center and a Destination to be used. Destinations that a further

than this distance from any Center will not be assigned to a Center

Output Spatial Reference

Outputs:

New Point feature class. The attribute table of the resulting feature class will have three new fields

[Center_ID] - the Feature ID of the Center point

[Dest_ID] - the Feature ID of the Destination feature

[ET_Dist] - the distance from the Center to the Destination

Notes:

The default output spatial reference is the one of the Centers dataset

The user can specify a different output spatial reference, but it has to have the same Geographic Coordinate System

as the one of the input feature classes

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSpiderDiagram <centers_dataset> <Destination_dataset> <out_feature class> <Cutoff_distance>

{output_spatial_reference}

Parameters

Expression Explanation

<centers_dataset> A Point feature class or feature layer

<Destination_dataset> A Point, Polyline or Polygon feature class or feature layer.

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<Cutoff_distance> A Double representing the Search tolerance (in the units of the {output_spatial_reference} to

be used

{output_spatial_reference} The spatial reference in which the calculations will be performed. If not specified the spatial

reference of the input dataset will be used.

NOTE: The spatial references of the <centers_dataset>, <Destination_dataset> and

{output_spatial_reference} must have the same Geographic Coordinate System

Scripting syntax

ET_GPSpiderDiagram (centers_dataset, Destination_dataset, out_feature class, Cutoff_distance, output_spatial_reference)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SpiderDiagram(pCentersFC As IFeatureClass, pDestFC As IFeatureClass, sOutFName As String, dCutOff As Double,

pOutSRef As ISpatialReference) As IFeatureClass

Copyright © Ianko Tchoukanski

Spider Diagram Attribute Link

Go to ToolBox Implementation Go to .NET Implementation

Creates a Spider Diagram between the points of a Center Points dataset and the features in the destination layer (points,

polygons, or polylines) based on the values in the link fields in both datasets. The created polylines will connect the Centers to

the destination features if the values in the link fields are the same.

Inputs:

Point dataset representing the Centers.

Link field in the input point dataset.

Point, Polyline or Polygon layer representing the destinations.

Link field in the destination dataset.

Optional - connect only closest destination. If not used all destinations that have the same values as a center will be

connected to the center.

Optional - Depending on the type of the destination dataset the following options are available

Point - not used

Polyline

Connect the Center to closest point on the polyline (Default)

Connect the Center to the middle point of the polyline

Polygon

Connect the Center to the closest point on the polygon boundary

Connect the Center to the centroid of the polygon.

Optional - Cutoff distance - the maximum distance between a Center and a Destination to be used. Destinations that a

further than this distance from any Center will not be connected to a Center

Outputs:

New Polyline feature class with single segmented polylines. The attributes of the centers dataset will be preserved

Notes:

The spatial references of both input dataset must have the same geographic coordinate system.

The output spatial reference is the one of the Centers dataset

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSpiderLink <centers_dataset> <centers_link_field> <Destination_dataset> <destination_link_field> <out_feature class>

{closest_only}{connect_center} {Cutoff_distance}

Parameters

Expression Explanation

<centers_dataset> A Point feature class or feature layer

 <centers_link_field> A String representing the link field in the centers feature class.

<Destination_dataset> A Point, Polyline or Polygon feature class or feature layer.

<destination_link_field> A String representing the link field in the destinations feature class.

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

{closest_only} A Boolean - if True, only the closest destination feature to the center will be connected

{connect_center} A Boolean - the value depends on the type of the destination feature class:

Point - not used

Polyline

False = Connect the Center to closest point on the polyline (Default)

True =Connect the Center to the middle point of the polyline

Polygon

False = Connect the Center to the closest point on the polygon

boundary(Default)

True = Connect the Center to the centroid of the polygon.

{Cutoff_distance} A Double representing the Search tolerance (in the units of the {centers_dataset} to be used

Scripting syntax

ET_GPSpiderLink (centers_dataset, centers_link_field Destination_dataset, destination_link_field, out_feature class,

closest_only, connect_center, Cutoff_distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SpiderDiagramAttributeLink(pCentersFC As IFeatureClass, sCentersLink As String, pDestFC As IFeatureClass, sDestLink As

String, sOutFName As String, Optional bClosestOnly As Boolean = False, Optional bMiddle As Boolean = False, Optional

dCutOff As Double = 1000000000) As IFeatureClass

Copyright © Ianko Tchoukanski

Find Closest Point

Go to ToolBox Implementation Go to .NET Implementation

Calculates the distance for each point of a point dataset to the closest point from the same dataset. The function produces

similar results as the Closest Feature Distance, but uses a robust algorithm and can be applied on datasets containing up to 2

million points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Outputs:

A new Point feature class. The attribute table of the resulting feature class will have three new fields

[ET_ID] - the ID of the feature

[ET_Dist] - the distance from the point to the closest point.

[ET_Closest] - the ID of the closest point.

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then the [ET_Dist] will have a value of

0 and [ET_ Closest] will have a value of -1

If there are coincident points in the input dataset, only one of the coincident point will be assigned a closest neighbor.

The other points in the same location will have values ET_Dist = 1 and ET_Closest = -1

The bigger the search tolerance is, the slower the process will be

The distance is calculated in the units of the Spatial Reference of the input dataset

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFindClosestPoint<input_dataset> <out_feature class> <cut_off>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<cut_off> A Double representing the maximum distance between two points to be considered neghbors - in the

units of the spatial reference of the input dataset

Scripting syntax

ET_GPFindClosestPoint(input_dataset,out_feature class, cut_off)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FindClosestPoint(pInFC As IFeatureClass, sOutFName As String, dCutOff As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Connect To Closest Point

Go to ToolBox Implementation Go to .NET Implementation

Creates an output polyline feature class with single segmented polylines that connect each point of the input Point feature

class to it's closest neighbor. The function uses a robust algorithm and can be applied on datasets containing up to 2 million

points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Add Duplicate Links option (see notes below)

Outputs:

A new Polyline feature class. The attribute table of the resulting feature class will have three new fields

[ET_From] - the ID of the FROM point

[ET_To] - the ID of the TO point

[ET_Dist] - the distance from the point to the closest point

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then no link will be created between

the two points

If there are coincident points in the input dataset, the duplicates will be ignored.

The direction of the resulting polyline is always from the evaluated point to the closest point found.

If there are 2 points "A" and "B" where point "B" is the closest neighbor of point "A" and point "A" is the closest

neighbor of point "B"

If the Add Duplicate Links option is selected, the resulting feature class will have 2 duplicate links - one from

"A" to "B and one from "B" to "A"

If the Add Duplicate Links option is NOT selected, then only one of the two links will be stored in the output.

Examples:

Result Dataset - Add Duplicate Links option NOT selected

The closest point to point 8 is point 10.

The closest point to point 10 is point 8

Only one link is added - from point 8 to point 10

Result Dataset - Add Duplicate Links option selected

The closest point to point 8 is point 10.

The closest point to point 10 is point 8

Two coincident links are added

from point 8 to point 10

from point 10 to point 8

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPConnectToClosestPoint<input_dataset> <out_feature class> <cut_off>{add_duplicate_links}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<cut_off> A Double representing the maximum distance between two points to be considered neghbors - in

the units of the spatial reference of the input dataset

{add_duplicate_links} A Boolean indicating whether duplicate links to be added to the output or not.

Scripting syntax

ET_GPConnectToClosestPoint(input_dataset,out_feature class, cut_off,add_duplicate_links)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ConnectToClosestPoint(pInFC As IFeatureClass, sOutFName As String, dCutOff As Double, Optional bAddDuplicates As

Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Connect Unstructured Points

Go to ToolBox Implementation Go to .NET Implementation

Connects each point of a point dataset to its closest neighbors to create polylines. The function does not require attributes that

define which points should pertain to a single polyline or order of the points within the polylines (if your point data has such

attributes use the Point To Polyline function instead). The function uses a robust algorithm and can be applied on datasets

containing up to 2 million points.

Inputs:

A Point feature layer

Cutoff distance - the maximum distance to search for neighbor points.

Avoid Loops option (see notes and examples below)

Outputs:

A new Polyline feature class.

Notes:

If the distance from a point to the closest point is larger than the Cutoff distance then no link will be created between

the two points

If there are coincident points in the input dataset, the duplicates will be ignored.

If the Avoid Loops option is not selected each point will be connected to its 2 closest neighbors (provided that the

distance between the point and the neighbors is less than the Cutoff distance)

If the Avoid Loops option is selected, the function will try to create longest non intersecting polyline possible.

Examples:

Source Points Result - Avoid Loops NOT selected Result - Avoid Loops selected

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPConnectUnstructuredPoints<input_dataset> <out_feature class> <cut_off>{avoid_loops}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<cut_off> A Double representing the maximum distance between two points to be considered neghbors - in the

units of the spatial reference of the input dataset

{avoid_loops} A Boolean indicating whether the function will try to avoid loops when connecting the points (see

example above).

Scripting syntax

ET_GPConnectUnstructuredPoints(input_dataset,out_feature class, cut_off,avoid_loops)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ConnectUnstructuredPoints(pInFC As IFeatureClass, sOutFName As String, dMaxGap As Double, Optional bAvoidLoops As

Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Ungenerate

Go to ToolBox Implementation

Exports a feature class to ArcInfo generate format text file. The user can specify optionally to export the attributes. In this case the format of the result text file will be in an extended version of ArcInfo generate forma - described below

Inputs:

A feature layer

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Spatial reference. The coordinates of the features can be exported in the original projection of the dataset or in the spatial reference assigned to the Data Frame

Outputs:

New text file

Notes:

If the "Export attributes" option is selected the output text file might not be readable from the ArcInfo Generate command

If the "Export bounding rectangles only" is selected (available for Polyline and Polygon layers), the resulting text file will contain the coordinates of the extents for each shape.

All the field names longer than 10 characters will be converted to 10 character strings

File formats: The shapes that have Z or M values will have an additional coordinate

Shape Type Standard Format Example Extended Format Example

Point

PointZ

PointM

id,x,y

id,x,y

id,x,y

END

1,34.5,-14.3

2,12.8,-19.6

3,13.4,-25.6

END

ID,X,Y,FIELD,FIELD

id,x,y,value,value

id,x,y,value,value

id,x,y,value,value

END

ID,X,Y,Town,Population

1,34.5,-14.3,London,44

2,12.8,-19.6,Paris,34

3,13.4,-25.6,Madrid,56

END

Polyline

PolylineZ

PolylineM

id

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1

34.5,-14.3

12.8,-19.6

END

2

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,Street,Streettype

1,Church,Street

34.5,-14.3

12.8,-19.6

END

2,Second,Avenue

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Polygon

PolygonZ

PolygonM

id,xLabel,yLabel

x,y

x,y

x,y

END

id

x,y

x,y

x,y

END

END

1, 12.5,-18,6

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y

x,y

x,y

END

id,value,value

x,y

x,y

x,y

END

END

ID,X,Y, Dam,Volume

1,12.5,-18,6,Vaal,5346

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5,Gariep,6578

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Box id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

END

1,34.5,-14.3,34.8,-14.1

2,12.8,-19.6,12.9,-19.2

3,13.4,-25.6,13.6,-25.4

END

ID,XMIN,YMIN,XMAX,YMAX,FIELD

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

END

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPUngenerate <input_dataset> <out_file> <delimiter> {export_attributes}

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer

<out_file> A String - the full name of the output text file

<delimiter> A String indicating what separator to be used. Valid strings:

"Comma"

"Space"

"Tab"

{export_attributes} A Boolean indicating whether to export the attributes.

Scripting syntax

ET_GPUngenerate (input_dataset out_file delimiter export_attributes)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Generate Wizard

Creates a feature class from ArcInfo generate format text file. The function supports an extended text file format in order to be able to

import attributes.

Inputs:

A text file - the format is described below

If the text file contains attributes, the field names are extracted from the first line in the text file. The user has to specify the type of

the fields (String, Integer,Long, Double) , the length and the scale (for double type fields)

The user has to specify what will be the output feature class type

Outputs:

A new feature class

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Polygon (from a box type input file)

Notes:

All the non valid records will be ignored

Characters in the coordinate lines or positions

Polylines with less than two coordinate lines

Polygons with less than three coordinate lines

Coordinate entries with less than two coordinates for normal shapes and less than three coordinates for Z or M shapes

The Polygon options will use only the closed shapes described. If "Force closure" option is used all the shapes that can be closed

will be added to the feature class

If "Attribute" option is used the field names will be extracted from the first non empty line in the text file

Avoid using reserved field names "Shape", "ObjectID" etc.

All the field names longer than 10 characters will be converted to 10 character strings

File formats: The shapes that have Z or M values will have an additional coordinate

Shape Type Standard Format Example Extended Format Example

Point

PointZ

PointM

id,x,y(,z)

id,x,y(,z)

id,x,y(,z)

END

1,34.5,-14.3

2,12.8,-19.6

3,13.4,-25.6

END

ID,X,Y,FIELD,FIELD

id,x,y(,z),value,value

id,x,y(,z),value,value

id,x,y(,z),value,value

END

ID,X,Y,Town,Population

1,34.5,-14.3,London,44

2,12.8,-19.6,Paris,34

3,13.4,-25.6,Madrid,56

END

Polyline

PolylineZ

PolylineM

id

x,y(,z)

x,y(,z)

END

id

x,y(,z)

x,y(,z)

x,y(,z)

END

END

1

34.5,-14.3

12.8,-19.6

END

2

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y(,z)

x,y(,z)

END

id,value,value

x,y(,z)

x,y(,z)

x,y(,z)

END

END

ID,Street,Streettype

1,Church,Street

34.5,-14.3

12.8,-19.6

END

2,Second,Avenue

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Polygon

PolygonZ

PolygonM

id,xLabel,yLabel

x,y(,z)

x,y(,z)

x,y(,z)

END

id

x,y(,z)

x,y(,z)

x,y(,z)

END

END

1, 12.5,-18,6

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

ID,FIELD,FIELD

id,value,value

x,y(,z)

x,y(,z)

x,y(,z)

END

id,value,value

x,y(,z)

x,y(,z)

x,y(,z)

END

END

ID,X,Y, Dam,Volume

1,12.5,-18,6,Vaal,5346

34.5,-14.3

12.8,-19.6

12.43,-19.88

END

2,14.3,24.5,Gariep,6578

13.4,-25.6

16.4,-27.6

13.8,-22.1

END

END

Box id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

id,xmin,ymin,xmax,ymax

END

1,34.5,-14.3,34.8,-14.1

2,12.8,-19.6,12.9,-19.2

3,13.4,-25.6,13.6,-25.4

END

ID,XMIN,YMIN,XMAX,YMAX,FIELD

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

id,xmin,ymin,xmax,ymax,value

END

Copyright © Ianko Tchoukanski

Import from Google Earth

Go to ToolBox Implementation

Converts the feature data contained in a KML or KMZ file to feature classes.

Inputs:

A Google Earth KML or KMZ file

Output workspace

Notes:

The KML format allows a lot of freedom in the data structure and not all applications that create KML

files structure the data in the same way. This in many cases makes it impossible to import correctly

the data. This is frequently the case with attribute data exported from GIS formats. Often the

attribute data is exported as part of the description field for a feature. This is usually done in HTML

format, which is not structured. KML Version 2.2 supports structured attribute data through the

"ExtendedData" element. The import function of ET GeoWizards creates attributes based on this

element.

KML Version 2.2 supports models, which are 3D objects in their own coordinate space. Such

models are not imported by ET GeoWizards. This includes Google SketchUp models.

ET GeoWizards does not support the "Link" element, which references data in external KML or KMZ

files.

The KML structure does have a definition of the Field Types, but not for the fields width, precision

and scale. General rules are used to create the fields. You can use the Redefine fields to fix some

problems in the field definitions.

Importing of KML files is slow in general, be patient.

See Google Earth general for important additional information.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPImportFromGoogle <in_file> <out_workspace>

Parameters

Expression Explanation

<in_file> A String - the full name of the input Google Earth file.

<out_workspace> A String - the full name of the output workspace (folder, personal or file

geodatabase)

Scripting syntax

ET_GPImportFromGoogle (in_file out_workspace)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Map To Google Earth

Exports all visible feature layers to Google Earth KML or KMZ file.

Inputs:

All visible layers in ArcMap

Map name

Map description

Output Google Earth file

Export option:

All - all features of the feature classes of the visible layers will be exported.

Definition - the Query Definitions will be honored - the features excluded by the query definitions will not be exported.

Selected - only selected features will be exported

Visible - only features that intersect the current visible extent will be exported

Coordinate Precision - number of digits after the decimal point for exported coordinates.

Export parameters. For each layer the user can assign different parameters. See Google Earth general for descriptions of the parameters

Notes:

For each layer the classification used in ArcMap will be exported with the symbology assigned.

Only single field unique value classification can be exported

For graduated classifications the use of Normalization field is supported.

For point layers only the size and the color of the ArcGIS markers will be used. Google Icons need to be selected for each layer.

Google icons need to be selected for Labels for polyline and polygon layers

The Name field values will be used for the name of the feature and for the Label

Transparency for each layer can be defined in the Transp field. Value of 0 means opaque and 100 means totally transparent.

To the Map description the software will add "Exported with ET GeoWizards". Do not remove ET GeoWizards if you want to import the KML back to ArcGIS.

This is used to identify that the KML structure is created by ET GeoWizards and more effective algorithm is used for import of the KML file.

See Google Earth general for important additional information.

Copyright © Ianko Tchoukanski

Google Earth General

Google Earth is a powerful tool for viewing, creating and sharing GIS data. The latest improvements in the KML

format allow storing attributes as structured data, which makes possible exchange and even editing of GIS data using

Google Earth. Google Earth comes in four different versions (from Free to Enterprise). Make sure to read the Google

Earth license agreement before using it.

What is KML

Keyhole Markup Language (KML) is an XML - based language for managing the display of geo spatial data in

Google Maps and Google Earth. Since a KML file is a text file, its size might become quite large. Google Earth also

takes a lot of RAM when large KML files are loaded. If possible split your datasets to subsets before converting them

to KML.

What is KMZ

The compressed version of the KML with the extension KMZ. Actually this is a zipped archive and the contents can

be extracted with any zip program. A KMZ file can contain one or more KML files together with images etc. The

export function of ET GeoWizards expect a full file name (with the extension). The extension of the output file defines

whether the file will be compressed (KMZ) or not (KML)

Google Earth version

ET GeoWizards exports KML version 2.2 files (this is the KML version which introduced support for attributes called

in KML "ExtendedData"). Since it is impossible to find out which exactly version of Google Earth starts supporting

KML 2.2, we recommend using Google Earth 4.2 or above.

Google Earth projection

For its reference system, KML uses Geographic Coordinate System (GCS) with WGS84 datum. In ArcGIS this

projection is called GCS_WGS_1984. The export to Google Earth functions of ET GeoWizards project the data on

the fly to GCS_WGS_1984. If the source data is in a projection that have different datum, the functions of ET

GeoWizards do on the fly geographic transformations on the data.

If the input data does not have a projection associated with it or have so called "Unknown" coordinate

system, the data cannot be exported to KML.

If the export functions cannot find an appropriate geographic transformation to project the input data to

GCS_WGS_1984, they will not export the data. This might happen if the input data is in a very specific or

outdated projection.

Consideration when exporting to Google Earth

A single KML file can contain several feature classes of different types (Point, Polyline and Polygon). The

Export To Google Earth function of ET GeoWizards structure the data in the following manner:

Each layer his its own folder

If a layer is classified each class will have a subfolder

If the info points have been exported for polyline and polygon layers, they are written as a separate

entry in a MultiGeometry and linked to the feature attributes.

ArcMap layers structure Google Earth folders structure

1.

http://earth.google.com/download-earth.html

As of version 10.0 the export function of ET GeoWizards supports multipart features, which are exported as

MultiGeometry in the KML file. These features will consist of several not connected geometries and will

have a single label point. If the same features are imported back, each geometry will be created as a single

part feature with the same attributes.

The export functions of ET GeoWizards allow creating Labels for each Polyline and Polygon features. The

Labels are created as follows:

For polygons - the label points of the polygons.

For polylines - the middle point of the polyline

Using Labels is convenient way to display the name of a polyline or polygon feature. Since Labels are part

of the feature they are also linked to the feature attributes, which can be displayed by clicking on the Label

as well as by clicking on the feature.

Point features are always labelled and the user can not turn the label option off.

2.

Point Symbols. ET GeoWizards uses a set of the standard Google Earth marker symbols to display point

features and Labels for polyline and polygon features. The user can select the marker to be used for each

feature class. The symbols that can be used are:

The size and the color of the symbols are taken from:

Export To Google Earth GUI function - The symbols assigned in the map

Feature Class To Google Earth scripting and toolbox function

Size - assigned by the user

Color - randomly assigned

3.

Exporting elevations: The export functions of ET GeoWizards allow three ways of exporting Z values for the

features.

Z values from geometry - Only available if the exported dataset to be exported has Z values

(PointZ, PolylineZ, PolygonZ).

Z values from a field - A numeric field is required

Constant Z values for all features

Note that Google Earth uses elevation values in Meters. If the Z values of the dataset are in Feet, the user

needs to indicate this in the export procedure.

Representation of the elevations in Google Earth:

Z Type - how the Z values will be interpreted by Google Earth

Absolute - Sets the altitude of the coordinate relative to sea level, regardless of the

elevation of the Google Earth terrain beneath the feature.

Relative - Sets the altitude of the feature relative to the Google Earth terrain in a particular

location.

NONE - the Z values are ignored - the feature will be displayed on the Google Earth

surface

Extrusion - Specifies whether to connect the geometry to the ground.

4.

Attributes. All attributes of the features are exported and can be displayed in Google Earth. To display the

attributes select the feature or its Label point.

5.

Editing attributes in Google Earth. The attributes cannot be edited in Google Earth. The only way to edit

attributes and send them back to ArcGIS is to use the Name and the Description of the Google Earth

features.

6.

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Google and Google Earth are trademarks of Google Inc

Copyright © Ianko Tchoukanski

Export To Google Earth
(See important information here)

This function is not available via the GUI of ET GeoWizards.

Converts a feature class to a Google Earth KML or KMZ file. Available only in the ToolBox implementation. See also the Map

to Google Earth function available via the user interface.

Command line syntax

ET_GPExportToGoogleEarth <input_dataset> <out_file> {KML_Description} {label_field} {description_field} {transparency}

{Z_Source} {z_field} {z_constant} {z_units} {z_type} {extrude_geometries} {attributes} {marker_symbol} {marker_scale}

{line_width} {export_info_points} {info_symbol} {info_scale} {coordinate_precision}

Expression Explanation

<input_dataset> A feature class or feature layer

<out_file> A String - the full name of the output Google Earth file. The extension (KML or KMZ) is required and

will define whether the result will be compressed (KMZ) or not (KML).

{KML_Description} A String that will be used for a general description of the KML file.

{label_field} A String representing a field name. The values in this field will be used for naming the Google Earth

features.

{description_field} Required. A String representing a field name. The values in this field will be used for description of

the Google Earth features. Read the general Google Earth notes.

 {transparency} A Double indicating the transparency to be used. 0 = Opaque, 100 = invisible

{Z_Source} A String indicating what will be the source for the elevation values. Valid strings:

"Z" - Z values from geometry - Only if the exported dataset to be exported has Z values

(PointZ, PolylineZ, PolygonZ).

"Field " - Z values from a field - A numeric field is required

"Constant" - constant Z values for all features

{z_field} A String representing a field name (numeric field). If the Z_Source = "Field ", the values in this field

will be used to get the Z values.

{z_constant} A Double representing the Z values for all features if Z_Source = "Constant"

{z_units} A String indicating the units of the Z values of the input dataset. Valid strings - "Meters" and "Feet".

{z_type} A String indicating how the Z values will be interpreted. Valid strings:

"Absolute" - Sets the altitude of the coordinate relative to sea level, regardless of the

elevation of the Google Earth terrain beneath the feature.

"Relative" - Sets the altitude of the feature relative to the Google Earth terrain in a particular

location.

"None" - the Z values are ignored - the feature will be displayed on the Google Earth surface.

{extrude_geometries} A Boolean indicating whether to connect the geometry to the ground.

{attributes} A String that indicates whether and how the attributes will be exported. Valid strings:

"Features" - the attributes will be exported to the actual features

"Labels" - the attributes will be exported to the Info - Points

"Both" - the attributes will be attached to both, the actual features and the info points

"None" - no attributes will be exported.

{marker_symbol} A String indicating which of the available Google Earth symbols will be used for point features. The

available symbols are:

{marker_scale} A Double indicating the size of the Icon for the point features. Actually this is a scale factor for the

Google Earth markers - values of 0.5 to 1.5 will give good results.

{line_width} A Double representing the width of the Polyline features and outline width for Polygon features

{export_info_points} A Boolean indicating whether the Info-Points will be exported.

{info_symbol} A String indicating which of the available Google Earth symbols will be used for displaying

Info-Points. The available symbols are above.

{info_scale} A Double indicating the size of the Icon for the Info-Points. Actually this is a scale factor for the

Google Earth markers - values of 0.5 to 1.5 will give good results.

{coordinate_precision} An Integer representing the number of digits after the decimal point for exported coordinates.

Scripting syntax

ET_GPExportToGoogleEarth (input_dataset out_file KML_Description label_field description_field transparency Z_Source

z_field z_constant z_units z_type extrude_geometries attributes marker_symbol marker_scale line_width export_info_points

info_symbol info_scale coordinate_precision)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Vector Grid

Go to ToolBox Implementation Go to .NET Implementation

Creates a polyline or polygon vector grid using user defined extents and cell size.

Inputs:

Initial extent of the grid - the grid will be generated using the coordinate system and units of:

the current view

a layer from the current view

Output spatial reference - the grid will be stored in the spatial reference of

the current view

a layer from the current view

Grid type

Polyline

Polygon

Cell size in X and Y directions

Outputs:

New Polyline or Polygon feature class

Notes:

The initial extents of the grid are defined by the extents of the selected layer or current extents of the data frame. The

extents can be changed manually during the dialog.

The cell size will be in the units of the input layer or data frame. If the input is Unprojected (Geographic "Projection")

there is an oprion to input values in Degrees - Minutes - Seconds

If the input is Unprojected only values between X = -180 To 180 and Y = -90 To 90 will be accepted

If the Input is Projected and the Output is in different projection, the user should make sure that the Grid extents are

valid

In order to avoid incorrect inputs, the size of the grid is limited to 4,000,000 cells (2000 by 2000)

A ET_Index field will be added to the attribute table. The values will indicate:

Polygon grid - the index of each Grid cell. The cell in the bottom left corner of the Grid will have an index of

"0-0"

Polyline grid - the X (Y) for each polyline in the input units.

ToolBox implementation

(Go to TOP)

Command line syntax - ET_GPVectorGridExtents

ET_GPVectorGridExtents <out_feature_class> {out_spatial_reference} <grid_type> {get_extents_from} <Extent>

<X_Cell_Size> <Y_Cell_Size>

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<grid_type> A String controlling the shape type of the output point grid. Valid values "Polygon", "Polyline"

 {get_extents_from} A String - a layer name or the full name of the a feature class to be used as a source for the

extents (see examples below)

<Extent> An Envelope representing the extents - "XMin YMin XMax YMax"

<X_Cell_Size> A Double representing the size of the call in X direction

<Y_Cell_Size> A Double representing the size of the call in Y direction.

Scripting syntax - ET_GPVectorGridExtents

ET_GPVectorGridExtents (out_feature_ class out_spatial_reference grid_type get_extents_from Extent X_Cell_Size

Y_Cell_Size)

Command line syntax - ET_GPVectorGridOrigin

ET_GPVectorGridOrigin <out_feature_class> {out_spatial_reference} <grid_type> <X_origin> <Y_origin> <Number_columns>

<Number_rows> <X_Cell_Size> <Y_Cell_Size>

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<grid_type> A String controlling the shape type of the output point grid. Valid values "Polygon", "Polyline"

<X_origin> A Double representing the X coordinate of the lower left corner of the grid.

<Y_origin> A Double representing the Y coordinate of the lower left corner of the grid.

<Number_Columns> A Long representing the number of columns that the resulting grid will have

<Number_Rows> A Long representing the number of rows that the resulting grid will have

<X_Cell_Size> A Double representing the size of the call in X direction

<Y_Cell_Size> A Double representing the size of the call in Y direction.

Scripting syntax - ET_GPVectorGridOrigin

ET_GPVectorGridOrigin (out_feature_ class out_spatial_reference grid_type X_origin Y_origin Number_Columns

Number_Rows X_Cell_Size Y_Cell_Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

VectorGridExtent(sOutFName As String, sGridType As String, pExtent As IEnvelope,dCellSizeX As Double, dCellSizeY As

Double, Optional pOutSref As ISpatialReference = Nothing) As IFeatureClass

VectorGridOrigin(sOutFName As String, sGridType As String, dLowerLeftX As Double, dLowerLeftY As Double,

iNumColumns As Integer, iNumRows As Integer, dCellSizeX As Double, dCellSizeY As Double, Optional pOutSref As

ISpatialReference = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Point Grid

Go to ToolBox Implementation Go to .NET Implementation

Creates a grid of points using user defined grid type and distance between the points.

Inputs:

Initial extent of the grid - the grid will be generated using the coordinate system and units of:

the current view

a layer from the current view

Output spatial reference - the grid will be stored in the spatial reference of

the current view

a layer from the current view

Grid type

Square

Rectangle

Triangle - equilateral

Distance between the points - in the case of rectangle X and Y spacing are required

Outputs:

New Point feature class

Notes:

The initial extents of the grid are defined by the extents of the selected layer or current extents of the data frame. The

extents can be changed manually during the dialog.

The cell size will be in the units of the input layer or data frame. If the input is Unprojected (Geographic "Projection")

there is an oprion to input values in Degrees - Minutes - Seconds

If the input is Unprojected only values between X = -180 To 180 and Y = -90 To 90 will be accepted

If the Input is Projected and the Output is in different projection, the user should make sure that the Grid extents are

valid

In order to avoid incorrect inputs, the size of the grid is limited to 4,000,000 cells (2000 by 2000)

A ET_Index field will be added to the point attribute table to indicate the index of each point in the Grid. The point in

the bottom left corner of the Grid will have an index of "0-0"

ToolBox implementation - two tools are available for the Point Grid function

(Go to TOP)

Command line syntax - ET_GPPointGridOrigin

ET_GPPointGridOrigin <out_feature_class> {out_spatial_reference} <grid_type> <x_origin> <y_origin> <number_columns>

<number_rows> <column_width> {row_height}

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<grid_type> A String controlling the type of the output point grid. Valid values "Square", "Rectangle" or "

Triangle"

<x_origin> A Double representing the X coordinate of the lower left point of the grid.

<y_origin> A Double representing the Y coordinate of the lower left point of the grid.

<number_columns> A Long representing the number of columns that the resulting grid will have

<number_rows> A Long representing the number of rows that the resulting grid will have

<column_width> A Double representing the the width of each grid column (X - cell size)

{row_height} A Double representing the the height of each grid column (Y - cell size). Needed only for a

"Rectangle" type grid. If not used row_height = column_width will be assigned.

Scripting syntax - ET_GPPointGridOrigin

ET_GPPointGridOrigin (out_feature_ class out_spatial_reference grid_type x_origin y_origin number_columns number_rows

column_width row_height)

Command line syntax - ET_GPPointGridExtents

ET_GPPointGridExtents <out_feature_class> {out_spatial_reference} <grid_type> {get_extents_from} <Extent>

<X_Cell_Size> <Y_Cell_Size>

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<grid_type> A String controlling the type of the output point grid. Valid values "Square", "Rectangle" or "

Triangle"

 {get_extents_from} A String - a layer name or the full name of the a feature class to be used as a source for the

extents (see examples below)

<Extent> A Double representing the Y coordinate of the lower left corner of the grid. (see examples below)

<X_Cell_Size> A Double representing the size of the call in X direction

<Y_Cell_Size> A Double representing the size of the call in Y direction.

Scripting syntax - ET_GPPointGridExtents

ET_GPPointGridExtents (out_feature_ class out_spatial_reference grid_type get_extents_from Extent X_Cell_Size

Y_Cell_Size)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointGridExtent(sOutFName As String, sGridType As String, pExtent As IEnvelope, dCellSizeX As Double, dCellSizeY As

Double, Optional pOutSref As ISpatialReference = Nothing) As IFeatureClass

PointGridOrigin(sOutFName As String, sGridType As String, dLowerLeftX As Double, dLowerLeftY As Double, iNumColumns

As Integer, iNumRows As Integer, dCellSizeX As Double, dCellSizeY As Double, Optional pOutSref As ISpatialReference =

Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Random Points On Polylines

Go to ToolBox Implementation Go to .NET Implementation

Generates random points located on the polylines of the input polyline dataset. The number of points per polyline can be constant or

different for each polyline - based on the values in a numeric field of the input polyline feature class."

Inputs:

A polyline feature class

The number of points per polyline can be input in one of the following ways

A numeric field which values will be used to get the number of points to be generated per polyline.

A constant number

Optional: The maximum number of points per polyline. This parameter is to enforce max number of points if a field is used for

getting the number of points to be generated. For example if a field is selected and the values in this field range from 5 to 50,000.

And the maximum number of points is set to 100, on the polylines that have values > 100 in the field only 100 points will be

generated. The default value is 500.

Optional: Minimum Distance from boundary - no point will be generated that is closer than this tolerance to the ends of the

polyline (introduced in version 10.2).

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polyline

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

[ET_Station] - the absolute position of the point along the polyline (in the units of the spatial reference of the input point

feature class)

Note: Be careful with assigning the number of points per polyline. The function will try to create N unique points on the polyline and if the

number of points allocated is too large, might be very slow or even fall into an indefinite loop.

Illustration:

Original polylines labeled with the values in field to be used as a

source for getting the number of points to be generated
The resulting point dataset

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRandomPointsOnPolylines<input_dataset> <out_feature class> {number_points_field} {number_points}

Parameters

Expression Explanation

<input_dataset> A Plyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class.

{number_points_field} Optional. A String numeric field which values will be used to get the number of points to be generated per

polyline.

{number_points} Optional. A number that is used in two ways

If a number_points_field is specified, number_points is used as maximum points allowed per polyline

If a number_points_field is an empty string, number_points is used as a constant that define the

number of points to be generated per polyline

Note: One of number_points_field or number_points should be specified.

Scripting syntax

ET_GPRandomPointsOnPolylines(input_dataset, out_feature class, number_points_field, number_points)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RandomPointsOnPolylines(pInFC As IFeatureClass, sOutFName As String, Optional iNumberPoints As Integer = 0, Optional

sNumberPointsField As String = "", Optional dMinDistanceToEnds As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Random Points In Polygons

Go to ToolBox Implementation Go to .NET Implementation

Generates random points located in the polygons of the input polygon dataset. The number of points per polygon can

be constant or different for each polygon - based on the values in a numeric field of the input polygon feature class.

Inputs:

A polygon feature class

The number of points per polygon can be input in one of the following ways

A numeric field which values will be used to get the number of points to be generated per polygon.

A constant number

Optional: The maximum number of points per polygon. This parameter is to enforce max number of points if

a field is used for getting the number of points to be generated. For example if a field is selected and the

values in this field range from 5 to 50,000. And the maximum number of points is set to 100, on the polygons

that have values > 100 in the field only 100 points will be generated. The default value is 500.

Optional: Minimum Distance from boundary - no point will be generated that is closer than this tolerance to

the boundary of the polygon (introduced in version 10.2).

Optional: Minimum distance between the points (introduced in version 11.0)

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

Notes:

If the number of points specified cannot be placed in specific polygon, a message will be stored in the log

file.

The larger minimum distance between the points specified, the more uniform the points created will be.

Illustration:

Original polygons labeled with the values in field to be used as a source for getting the number of points to be

generated and the resulting points.

Distance between points = 0, Minimum distance to boundary = 0

30 points per polygon.

Distance between points = 0, Minimum distance to boundary = 0

30 points per polygon.

Distance between points = 0, Minimum distance to boundary = 5

30 points per polygon.

Distance between points = 5, Minimum distance to boundary = 0

30 points per polygon.

Distance between points = 5, Minimum distance to boundary = 5

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRandomPointsInPolygons<input_dataset> <out_feature_class> {number_points_field} {number_points}

{min_distance_between_points} {min_distance}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

{number_points_field} A String representing the name of a numeric field which values will be used to

get the number of points to be generated per polygon.

{number_points} Optional. A number that is used in two ways

If a number_points_field is specified, number_points is used as

maximum points allowed per polygon

If a number_points_field is an empty string, number_points is used as

a constant that define the number of points to be generated per

polygon

{min_distance_between_points} A Double specifying the minimum distance between the points.

{min_distance} A Double specifying the minimum distance from boundary.

Note: One of number_points_field or number_points should be specified.

Scripting syntax

ET_GPRandomPointsInPolygons(input_dataset, out_feature_class, number_points_field, number_points,

min_distance_between_points, min_distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RandomPointsInPolygons(pInFC As IFeatureClass, sOutFName As String, Optional iNumberPoints As Integer = 0,

Optional sNumberPointsField As String = "", Optional dMinDistanceBetween As Double = 0, Optional

dMinDistanceToBoundary As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Point Grids In Polygons

Go to ToolBox Implementation Go to .NET Implementation

Generates uniform (regularly spaced) points located in the polygons of the input polygon dataset. The distance between the

points for each polygon can be the same or different - based on the values in a numeric field of the input polygon feature class.

The user can specify the rotation angle for the resulting point grid.

Inputs:

A polygon feature class

The distance between the points for each polygon can be input in one of the following ways

A numeric field which values will be used to get the distance between points for each polygon.

A constant number defining the distance between points for all polygons.

Rotation angle

Constant for all polygons - (in degrees starting from East anti-clockwise)

From field - different rotation angle for each field (in degrees starting from East anti-clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

Illustration:

Distance between points = 10, Rotational angle = 0

Original polygons labeled with the values in field to be used as a source for getting

the distance between the points.

Rotational angle = "Along the longest Side"

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointGridsInPolygons<input_dataset> <out_feature_class> {distance} {distance_field} {angle_from} {rotation_angle}

{angle_field}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

{distance} A Double representing the distance between the points for all polygons

{distance_field} A String representing the name of a numeric field which values will be used to get the distance

between the points for each polygon

{angle_from} A String defining how the rotation angle will be specified

"Constant" - Constant for all polygons - (in degrees starting from East anti-clockwise)

"From field" - different rotation angle for each field (in degrees starting from East

anti-clockwise)

"Longest Axis" - Along the longest axis of each polygon

"Longest Side" - Along the longest side of each polygon

{rotation_angle} A Double - specifying the rotation angle for all polygons.

{angle_field} A String - the name of the field to be used as source for rotation angle.

Scripting syntax

ET_GPPointGridsInPolygons(input_dataset, out_feature_class, distance, distance_field, angle_from, rotation_angle,

angle_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointGridsInPolygons(pInFC As IFeatureClass, sOutFName As String, sAngleFrom As String, Optional dDistance As Double =

0, Optional sDistanceField As String = "", Optional dAngle As Double = 0, Optional sAngleField As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Square Grids In Polygons

Go to ToolBox Implementation Go to .NET Implementation

Generates square grids located in the polygons of the input polygon dataset. The cell size for each polygon can be the same

or different - based on the values in a numeric field of the input polygon feature class. The user can specify the rotation angle

for the resulting square grids.

Inputs:

A polygon feature class

The cell size of the grid for each polygon can be input in one of the following ways

A numeric field which values will define the cell size for the grid for each polygon.

A constant number that defines the cell size (the same for all polygons)

Rotation angle

Constant for all polygons - (in degrees starting from East anti-clockwise)

From field - different rotation angle for each field (in degrees starting from East anti-clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Squares completely inside the polygons

if TRUE - no square will intersect the polygon boundary.

If FALSE - the centers of the squares will be inside the polygons, but the squares might intersect the polygon

boundary

Outputs:

New Polygon feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

Illustration:

Cell size = 10, Rotational angle = "Along the longest side"

Completely inside = TRUE

Original polygons labeled with the values in field to be used as a source for the Cell

Size.

Rotational angle = "Along the longest Axis"

Completely inside = FALSE

Original polygons labeled with the values in field to be used as a source for the Cell

Size.

Rotational angle = 0

Completely inside = TRUE

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSquareGridsInPolygons<input_dataset> <out_feature_class> {side_length} {side_length_field} {angle_from}

{rotation_angle} {angle_field} {inside_only}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

{side_length} A Double representing the cell size for all polygons

{side_length_field} A String representing the name of a numeric field which values will be used to get the cell size for

each polygon

{angle_from} A String defining how the rotation angle will be specified

"Constant" - Constant for all polygons - (in degrees starting from East anti-clockwise)

"From field" - different rotation angle for each field (in degrees starting from East

anti-clockwise)

"Longest Axis" - Along the longest axis of each polygon

"Longest Side" - Along the longest side of each polygon

{rotation_angle} A Double - specifying the rotation angle for all polygons.

{angle_field} A String - the name of the field to be used as source for rotation angle.

{inside_only} A Boolean defining whether the resulting square can intersect the polygon boundary or not.

Scripting syntax

ET_GPSquareGridsInPolygons(input_dataset, out_feature_class, side_length, side_length_field, angle_from, rotation_angle,

angle_field, inside_only)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SquareGridsInPolygons(pInFC As IFeatureClass, sOutFName As String, sAngleFrom As String, Optional dCellSize As Double

= 0, Optional sCellSizeField As String = "", Optional dAngle As Double = 0, Optional sAngleField As String = "", Optional

bInsideOnly As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Uniform Points In Polygons

Go to ToolBox Implementation Go to .NET Implementation

Generates uniform (regularly spaced) points located in the polygons of the input polygon dataset. The number of points per

polygon can be constant or different for each polygon - based on the values in a numeric field of the input polygon feature

class. The distance between the points is interpolated for each polygon. The user can specify the rotation angle for the

resulting point grid.

Inputs:

A polygon feature class

The number of points per polygon can be input in one of the following ways

A numeric field which values will be used to get the number of points to be generated per polygon.

A constant number

Optional: Minimum Distance from boundary - no point will be generated that is closer than this tolerance to the

boundary of the polygon.

Rotation angle

Constant for all polygons - (in degrees starting from East anti-clockwise)

From field - different rotation angle for each field (in degrees starting from East anti-clockwise)

Along the longest axis of each polygon

Along the longest side of each polygon

Outputs:

New Point feature class.

The following fields are added to the attribute table of the resulting feature class.

[ET_ID] - the ID of the original polygon

[ET_X] - the X coordinate of the point

[ET_Y] - the Y coordinate of the point

[ET_Dist] - the distance between the generated points (constant for the points in each polygon)

Illustration:

Original polygons labeled with the values in field to be used as a source for getting the

number of points to be generated and the resulting points.

Rotational angle = 0, Minimum distance to boundary = 5

Original polygons labeled with the values in field to be used as a source for getting the

number of points to be generated and the resulting points.

Rotational angle = "Along the longest Axis", Minimum distance to boundary = 5

Original polygons labeled with the values in field to be used as a source for getting the

number of points to be generated and the resulting points.

Rotational angle = "Along the longest side", Minimum distance to boundary = 5

50 points per polygon.

Rotational angle = "Along the longest side", Minimum distance to boundary = 0

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPUniformPointsInPolygons<input_dataset> <out_feature_class> {number_points_field} {number_points} {min_distance}

{angle_from} {rotation_angle} {angle_field}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

{number_points_field} A String representing the name of a numeric field which values will be used to get the number of

points to be generated per polygon.

{number_points} A Double representing the number of points for to be created in each polygons (the same for all

polygons)

{min_distance} A Double specifying the minimum distance from boundary.

{angle_from} A String defining how the rotation angle will be specified

"Constant" - Constant for all polygons - (in degrees starting from East anti-clockwise)

"From field" - different rotation angle for each field (in degrees starting from East

anti-clockwise)

"Longest Axis" - Along the longest axis of each polygon

"Longest Side" - Along the longest side of each polygon

{rotation_angle} A Double - specifying the rotation angle for all polygons.

{angle_field} A String - the name of the field to be used as source for rotation angle.

Scripting syntax

ET_GPUniformPointsInPolygons(input_dataset, out_feature_class, number_points_field, number_points, min_distance,

angle_from, rotation_angle, angle_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

UniformPointsInPolygons(pInFC As IFeatureClass, sOutFName As String, sAngleFrom As String, Optional iNumberPoints As

Integer = 0, Optional sNumberPointsField As String = "", Optional dAngle As Double = 0, Optional sAngleField As String = "",

Optional dMinDistanceToBoundary As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Create Tiles

Go to ToolBox Implementation Go to .NET Implementation

Creates a regular polygons grid with user defined extents, tile shape and size.

Inputs:

Initial extent of the grid - the grid will be generated using the coordinate system and units of:

the current view

a layer from the current view

Output spatial reference - the grid will be stored in the spatial reference of

the current view

a layer from the current view

Grid type

Triangle

Square

Hexagon

Output spatial reference

Cell size.

Size represents option - depending on the user input the size parameter can represent

The side of the polygon

The radius of the circle inscribed in the polygon

The radius of the circle circumscribed around the polygon.

Shape orientation (for square and hexagon tiles only) - see examples below

Flat

Pointy

Outputs:

New Polygon feature class

Notes:

The initial extents of the grid are defined by the extents of the selected layer or current extents of the data frame. The

extents can be changed manually during the dialog.

The cell size will be in the units of the input layer or data frame.

If the input is Unprojected only values between X = -180 To 180 and Y = -90 To 90 will be accepted

If the Input is Projected and the Output is in different projection, the user should make sure that the Grid extents are

valid

In order to avoid incorrect inputs, the size of the grid is limited to 4,000,000 cells (2000 by 2000)

A ET_Index field will be added to the attribute table. The values will indicate the index of each Grid cell. The cell in the

bottom left corner of the Grid will have an index of "0-0".

Examples:

Shape = Triangle

Shape = Square, Orientation = "Pointy"

Shape = Hexagon, Orientation = "Flat"

Shape = Hexagon, Orientation = "Pointy"

ToolBox implementation

(Go to TOP)

Command line syntax - ET_GPCreateTilesExtent

ET_GPCreateTilesExtent <out_feature_class> {out_spatial_reference} <shape_type> {get_extents_from} <Extent>

<Size_represents> <Size> {Orientation}

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<shape_type> A String controlling the shape type of the output tiles - "Triangle", "Square" or "Hexagon"

 {get_extents_from} A String - a layer name or the full name of the a feature class to be used as a source for the

extents.

<Extent> An Envelope representing the extents - "XMin YMin XMax YMax"

<Size_represents>

Required. A String indicating the meaning of the <SIZE> parameter

Radius In - radius of the inscribed circle

Radius Out - radius of the circumscribed circle

Side - the side of the polygon

<Size> A Double representing the size (see above for options)

{Orientation} A String representing the tile orientation - "Flat" or "Pointy" - for Square or Hexagon tiles only.

Scripting syntax - ET_GPCreateTilesExtent

ET_GPCreateTilesExtent (out_feature_ class, out_spatial_reference, shape_type, get_extents_from, Extent, Size_represents,

Size, Orientation)

Command line syntax - ET_GPCreateTilesOrigin

ET_GPCreateTilesOrigin <out_feature_class> {out_spatial_reference} <shape_type> <X_origin> <Y_origin>

<Number_columns> <Number_rows> <Size_represents> <Size> {Orientation}

Parameters

Expression Explanation

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} The spatial reference of the output feature class. If not specified the output will be created with

Unknown coordinate system

<shape_type> A String controlling the shape type of the output tiles - "Triangle", "Square" or "Hexagon"

<X_origin> A Double representing the X coordinate of the lower left corner of the grid.

<Y_origin> A Double representing the Y coordinate of the lower left corner of the grid.

<Number_Columns> A Long representing the number of columns that the resulting grid will have

<Number_Rows> A Long representing the number of rows that the resulting grid will have

<Size_represents>

Required. A String indicating the meaning of the <SIZE> parameter

Radius In - radius of the inscribed circle

Radius Out - radius of the circumscribed circle

Side - the side of the polygon

<Size> A Double representing the size (see above for options)

{Orientation} A String representing the tile orientation - "Flat" or "Pointy" - for Square or Hexagon tiles only.

Scripting syntax - ET_GPCreateTilesOrigin

ET_GPCreateTilesOrigin (out_feature_ class, out_spatial_reference, shape_type, X_origin, Y_origin, Number_Columns,

Number_Rows, Size_represents, Size, Orientation)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateTilesExtent(sOutFName As String, sShapeType As String,pExtent As IEnvelope, sSizeRepresents As String, dSize As

Double, sOrientation As String, Optional pOutSref As ISpatialReference = Nothing) As IFeatureClass

CreateTilesOrigin(sOutFName As String, sShapeType As String, dLowerLeftX As Double, dLowerLefty As Double,

iNumColumns As Integer, iNumRows As Integer,sSizeRepresents As String, dSize As Double, sOrientation As String,

Optional pOutSref As ISpatialReference = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Point

Go to ToolBox Implementation Go to .NET Implementation

Removes the duplicate points from a point feature data set.

Inputs:

A point feature layer

Outputs:

New Point feature class

Each set of duplicate points (that have exactly the same location) will be replaced by a single point. This point

will carry the attributes of one of the original points.

Optional Point feature class that identifies the duplicates in the input data set.

The attribute table of the duplicates feature class has all the fields from the input data set.

The attributes of the points are these that have not been preserved in the clean feature class. Example:. If

two points with attributes "A" and "B" have exactly the same location. The clean feature class will contain only

one of them e.g. "A". The duplicates feature class will contain the other one -"B"

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanPoints <input_dataset> <out_feature class> <duplicates_feature_class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

{duplicates_feature_class} A String - the full name of the output feature class that identifies the points removed as

duplicates. (A feature class with the same full name should not exist)

Scripting syntax

ET_GPCleanPoints (input_dataset, out_feature class, duplicates_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanPoints(pInFC As IFeatureClass, sOutFName As String, sDupFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Connect Points

Go to ToolBox Implementation Go to .NET Implementation

Connects with lines each point from a point dataset to every other point from the same dataset that is closer to the point than the user defined cut off distance.

Assigns the IDs of the From and To Points to each line..

Calculates the length and angle of the connector lines.

Inputs:

A Point feature class

Generalization tolerance - should be smaller than 20% of the smaller side of the extent envelope of the input dataset.

Data field - if specified the output feature class will have a field in which the value for each resulting point will be the sum of the values of the points

pertaining to this cluster.

Outputs:

New point feature class. Fields:

[ET_From] - the ID of the start point of the line

[ET_To] - the ID of the end point of the line

[ET_Length] - the length of the line

[ET_Angle] - the angle of the line

Notes:

If no Cutoff distance tolerance is specified each point will be connected to all other points

Important: The number of connector lines created if no cutoff distance is used can be calculated using the formulae N = n x (n-1)/2 (N - number of lines, n -

number of input points). For example 1,000 points will create 499,500 lines, 10,000 points will create 49,995,000 lines, which is not a dataset you want to

handle.

Example:

Each set of points will be connected only once.

Point 0 connects to Points 1, 2, 3, 4

Point 1 connects to Points 2, 3, 4 (it already has been

connected to Point 0)

Point 2 connects to Points 3, 4 (it already has been

connected to Points 0 and 1)

......

The angle is calculated in North Azimuth direction

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPConnectPoints<input_dataset> <out_feature class> {Cutoff_distance}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_ class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

{Cutoff_distance} A Double representing the Generalization tolerance.

Scripting syntax

ET_GPThinPoints (input_dataset, out_feature_ class, Cutoff_distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ConnectPoints(pInFC As IFeatureClass, sOutFName As String, dCutOff As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Disperse Points

Go to ToolBox Implementation Go to .NET Implementation

Disperses (separates) the coincident points. The first point in a location preserves its coordinates. Every next point found in the

same location is moved randomly within user defined maximum offset distance from its original location.

Inputs:

A Point feature class

Maximum allowed offset - the duplicate points will move no further than this tolerance from their original location.

Dispersion method:

Random - the points will be relocated randomly within the specified allowed distance

Regular - the resulting points will be placed on a circle with radius the allowed offset distance.

Outputs:

New point feature class. Fields:

The attributes of the original features will be preserved.

[ET_Status] field will be added. The values in this field will indicate whether the resulting point is in its original

position or has been relocated.

Examples:

Input Dataset

Dispersed Randomly

Dispersed Regularly

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPDispersePoints<input_dataset> <out_feature_class> <tolerance> <disperse_method>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<tolerance> A Double representing the Maximum allowed offset - the duplicate points will move no further than

this tolerance from their original location.

<disperse_method> A string defining how the points will be dispersed - "Random" or "Regular"

Scripting syntax

ET_GPDispersePoints(input_dataset, out_feature_ class, tolerance,disperse_method)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

DispersePoints(pInFC As IFeatureClass, sOutFName As String, dTol As Double, sDisperseMethod As String) As

IFeatureClass

Copyright © Ianko Tchoukanski

Perpendiculars from Points to Polylines

Go to ToolBox Implementation Go to .NET Implementation

Draws a perpendicular polyline from each point to the closest polyline from the reference layer and calculates several

attributes for each perpendicular line.

Inputs:

A point feature class

A reference polyline feature class

Search tolerance.

Outputs:

New Polyline feature class with lines from the source points and perpendicular to the closest polyline from the

reference feature class.

The attributes of the original points are transferred to the resulting lines.

The following fields are added to the attribute table of the resulting feature class.

[ET_Dist] - the distance from the original point to the closest polyline (the length of the perpendicular line)

[ET_Pos] - the relative position of the original point along the closest polyline (in percent)

[ET_Angle] - the angle (0 to 360) of the resulting perpendicular line in degrees starting North clockwise

[ET_Station] - the absolute position of the original point along the closest polyline (in the units of the spatial

reference of the input point feature class)

Illustration:

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPerpendicularsToPolylines<input_dataset> <Reference_dataset> <out_feature class> <search_tolerance>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<Reference_dataset> A Polyline feature class or feature layer.

<out_feature class> A String - the full name of the output feature class.

<search_tolerance> A Double representing the Search tolerance (in the units of the spatial reference of the input point

dataset) to be used

Scripting syntax

ET_GPPerpendicularsToPolylines (input_dataset Reference_dataset out_feature class search_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PerpendicularsToPolylines(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String, dSearchTol As

Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Point Angle and Position

Go to ToolBox Implementation Go to .NET Implementation

Identifies the closest polyline from the reference layer to each point and calculates: the angle of the closest polyline segment,

the position & stationing of the point along the polyline and the distance to the polyline

Inputs:

Point feature layer

Reference polyline layer

Search tolerance - the maximum distance to search for features in the distance layer

Outputs:

A new Point feature class. The attribute table of the resulting feature class will have three new fields

[ET_Angle] - the angle of the closest segment of the closest to the point polyline. The angle is in degrees 0.00

= North, clockwise.

[ET_Pos] - the distance from the start point of the closest polyline to the point along the polyline as a

percentage of the total length of the polyline.

[ET_Station] - the actual distance from the start point of the closest polyline to the point along the polyline,

measured in the map units

[ET_Dist] - the shortest distance from the point to the closest polyline measured in the map units

[ET_Side] - indicates on which side of the polyline is the point (introduced in version 10.2).

[ET_M]/[ET_Z] - the M(Z) value interpolated from the closest polyline (if the reference dataset is of

PolylineM(Z) type)
[ET_Closest] - the ID of the closest polyline from the reference dataset.

Notes:

If the distance from a point to the closest feature from the distance layer is larger than the Search Tolerance then the

[ET_Angle] will have a value of 0, [ET_Pos] and [ET_Station] will have values of -1

The distances are calculated in the Spatial Reference of the input feature class

All the attributes of the input point dataset are transferred to the output

The function incorporates the functionality of the Point Distance and Measure Points functions available in the pre -

11.0 versions of ET GeoWizards.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointAngleAndPosition <input_dataset> <Reference_dataset> <out_feature_class> <search_tolerance>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<Reference_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<search_tolerance> A Double representing the Search tolerance (in the units of the calc_spatial_reference) to be used

Scripting syntax

ET_GPPointAngleAndPosition (input_dataset, Reference_dataset, out_feature_class, search_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointAngleAndPosition(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String, dSearchTol As Double) As

IFeatureClass

Copyright © Ianko Tchoukanski

Point Global Snap

Go to ToolBox Implementation Go to .NET Implementation

Snaps the features of a point layer to another layer (Point, Polyline or Polygon)

Inputs:

A point layer to be snapped

A snap layer - point, polyline or polygon

Snap tolerance

Snap options

Outputs:

A point feature class - the points from the source layer will be moved to snap to the features of the Snap Layer (if

within the snap tolerances

Options:

Vertices: The points will be snapped to the nearest vertex of the nearest feature from the Snap layer

Nearest edge: The points will be snapped to the nearest point of the nearest feature from the Snap layer

Vertices & Edges: If there is a vertex closer than the snap tolerance to the point to be snapped, the point will snap to

it, otherwise it will snap to the nearest edge.

Snap to reference Z values (only if the input and output are Z enabled)

Notes:

The snap distance should be in the units of the input dataset.

The Source and the Snap datasets can have different spatial references as long as they have the same Geographic

Coordinate systems.

Example:

Before Snap
After Snap

Option: Vertices

After Snap

Option: Nearest Edge

After Snap

Option: Vertices & Edges

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSnapPoints <input_dataset> <Reference_dataset> <out_feature_class> <snap_tolerance> {snap_vertices}

{snap_nearest}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<Reference_dataset> A Point,Polyline or Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<snap_tolerance> A Double representing the Search tolerance (in the units of the input_dataset) to be used

{snap_vertices} A Boolean indicating whether snapping to the closest vertex of the nearest feature from the

Reference_dataset to be used

{snap_nearest} A Boolean indicating whether snapping to the nearest point of the nearest feature from the

Reference_dataset to be used

Scripting syntax

ET_GPSnapPoints (input_dataset, Reference_dataset, out_feature_class, snap_tolerance, snap_vertices, snap_nearest)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SnapPoints(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String, dSnapTol As Double, Optional

bVertex As Boolean = False, Optional bNearest As Boolean = False, Optional bSnapToZ As Boolean = False) As

IFeatureClass

Copyright © Ianko Tchoukanski

Point Intersection

Go to ToolBox Implementation Go to .NET Implementation

Creates a point feature class with the intersection points of two polyline layers or a polyline layer and the boundaries of the

polygons from a polygon layer.

Inputs:

A polyline layer

A polyline or a polygon layer

Outputs:

A point feature class - a point in each intersection between polylines from different layers .

Notes:

The two layers should have the same Spatial Reference

If you need a point intersection of the boundaries of two polygon layers, convert one of the layers to polyline first.

Sources: A polygon and a polyline datasets

Resulting points

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointIntersection <input_dataset> <second_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<second_dataset> A Polyline or Polygon feature class or feature class.

NOTE: The spatial references of <second_dataset> and the <input_dataset> must have the same

Geographic Coordinate System

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax

ET_GPPointIntersection (input_dataset, second_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointIntersection(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Points To Rectangles

Go to ToolBox Implementation Go to .NET Implementation

Creates rectangles from points in a point dataset and user defined width, height rotation angle and location of the point.

Inputs:

A Point feature class

Rectangle Width. The width can be fixed for all points or different assigned from the values in a numeric field of the point attribute table

Rectangle Height. The height can be fixed for all points or different assigned from the values in a numeric field of the point attribute table

Rotation angle. The angle can be fixed for all points or different assigned from the values in a numeric field of the point attribute table

Point location. This parameter defines what will be the location of the resulting rectangles in relation to the original points.

Outputs:

New polygon feature class. All the original field values will be transferred from the points to the polygons.

Notes:

The values for the Width and the Height should be in the units of the spatial reference of the input Point dataset

The angle (if used) should be in Decimal Degrees and have Polar orientation - East = 0, anti-clockwise

Examples:

Width = 300, Height = 200

Angle = 15, Location = "Center"

Width = 300, Height = 200

Angle = 15, Location = "LL" (Lower Left)

Width = 300, Height = 200

Angle = 0, Location = "UR" (Upper Right)

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointsToRectangles <input_dataset> <out_feature_class> <width_field> <height_field> <angle_field> <LowerLeft | UpperLeft | UpperRight | LowerRight | Center>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<width_field> A String representing the name of a field in the in the attribute table of the input dataset field name. The field has the values for the width of the rectangles to be created.

<height_field> A String representing the name of a field in the in the attribute table of the input dataset field name. The field has the values for the height of the rectangles to be created.

<angle_field> A String representing the name of a field in the in the attribute table of the input dataset field name. The field has the values for the rotation angle of the rectangles to be created. The angle should

be in Decimal Degrees and have Polar orientation - East = 0, anti-clockwise.

<LowerLeft | UpperLeft |

UpperRight | LowerRight |

Center>

Required. A String - This parameter defines what will be the location of the resulting rectangles in relation to the original points.. The available options are (Case sensitive):

"LL" - Lower Left corner of the rectangles will be located on the input point.

"LR" - Lower Right corner of the rectangles will be located on the input point.

"UL" - Upper Left corner of the rectangles will be located on the input point.

"UR" - Upper Right corner of the rectangles will be located on the input point.

Any other string used will cause the centers of the rectangles to be located on the input point.

Scripting syntax

ET_GPPointsToRectangles (input_dataset, out_feature_class,width_field,height_field, angle_field, location_type)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToRectangles(pInFC As IFeatureClass, sOutFName As String, sWidthField As String, sHeightField As String, sAngleField As String, sLocation As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Reverse Geocoding

Uses a reference polyline (street centerlines) layer to assign addresses to the points from a point layer. Allows transfer of any additional attributes.

Inputs:

A point layer which features are to be assigned addresses

A reference polyline layer that will be used as a source for the addresses

The type of address data

Single

Range Continuous - From and To address fields expected

Range Address - Two pairs (Left & Right) address fields expected. The side of the points taken into account.

Search distance

Additional fields to be transferred to the points

Outputs:

A point feature class with addresses assigned to the points

Notes:

Range attributes from string and numeric fields can be handled. The records that have range values containing non numeric characters will not be used.

Example:

Address range Single range

Copyright © Ianko Tchoukanski

Create Station Points

Go to ToolBox Implementation Go to .NET Implementation

Creates equally spaced points based on the source polyline layer and the user specified distance between the points.

Inputs:

A polyline feature layer

Distance between stations

Output spatial reference

Outputs:

New Point feature class with points distributed along the input polylines based on the user specified distance between

the stations

The attributes of the original polylines are preserved

The following fields are added to the point attribute table

[ET_ID] - the FID of original polylines.

[ET_IDP] - this is a unique number identifying each part of the polylines. If a polyline with FID = 356 has 3

parts, the corresponding points will have values in this fields 356_0, 356_1 and 356_2.

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

[ET_Angle] - the angle of the polyline in this point.

[ET_Station] - the distance from the start point of the polyline to this point

Notes:

The distance is measured in the units of the output spatial reference

The default output spatial reference is the one of the input polyline dataset

The user can specify a different output spatial reference, but it has to have the same Geographic Coordinate System

as the one of the input dataset

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPStationPoints <input_dataset> <out_feature class> <station_distance> {out_spatial_reference}

Parameters

Expression Explanation

<input_dataset> A Plyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<station_distance> A Double representing the step with which the points will be stationed on the input polylines

{out_spatial_reference} The spatial reference in which the calculations will be performed. If not specified the spatial

reference of the input dataset will be used.

Scripting syntax

ET_GPStationPoints (input_dataset, out_feature class, station_distance, out_spatial_reference)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

StationPoints(pInFC As IFeatureClass, sOutFName As String, dStationDistance As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Thin (Generalize) Points

Go to ToolBox Implementation Go to .NET Implementation

Reduces the number of points in a point dataset based on their spatial location.

Points that are closer to each other than the tolerance specified will be converted to a single point.

The values in the field specified will be summarized for each cluster and saved in the point representing this cluster.

Optionally a link from the original points to the generalized one can be added.

Inputs:

A Point feature class

Generalization tolerance - should be smaller than 20% of the smaller side of the extent envelope of the input dataset.

Data field - if specified the output feature class will have a field in which the value for each resulting point will be the sum of the

values of the points pertaining to this cluster.

Outputs:

New point feature class. Fields:

[ET_Count] - the number of points from the input feature class represented by each output point

Value Field - the sum of the values in the user specified field

[ET_Link] - added only if the "Add Link from the original points" option is selected.

Notes:

If no Generalization tolerance is specified, the tolerance will be set to 0 - only the exact duplicates will be removed

Examples:

Input Dataset
Result Dataset labeled with the number of

points they represent (ET_Count field)
 Overlay

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPThinPoints<input_dataset> <out_feature class> <tolerance> {add_link} {value_field}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full name should not exist)

<tolerance> A Double representing the Generalization tolerance.

{add_link} A Boolean. If TRUE, a link field is added to both Original and Generalized points. The values in this field

("ET_Link") can be used to back link the generalized points to the original ones.

{value_field} A String representing the Data field.

Scripting syntax

ET_GPThinPoints (input_dataset, out_feature_ class, tolerance, add_link, value_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ThinPoints(pInFC As IFeatureClass, sOutFName As String, dTolerance As Double, Optional bBackLink As Boolean = False, Optional

ByVal sValueField As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski

 Points To Regular Polygons

Go to ToolBox Implementation Go to .NET Implementation

Creates regular polygons from points in a point dataset and user defined number of sides, size and rotation angle. The source point will be located in the center of the polygons.

Inputs:

A Point feature class

Number of sides of the polygons to be created.

Size represents option - depending on the user input the size parameter can represent

The side of the polygon

The radius of the circle inscribed in the polygon

The radius of the circle circumscribed around the polygon.

Size of the polygon. The size can be fixed for all points or different assigned from the values in a numeric field of the point attribute table

Rotation angle.

Outputs:

New polygon feature class. All the original field values will be transferred from the points to the polygons.

Notes:

The values for the size should be in the units of the spatial reference of the input Point dataset

The angle (if used) should be in Decimal Degrees and have Polar orientation - East = 0, anti-clockwise. The angle defines the location of the start vertex of the polygon.

Examples:

Size = 30 , Angle = 0, Number sides = 5

Option - Radius Inscribed

Size = 30 , Angle = 0, Number sides = 5

Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 5

Option - Side

Size = 30 , Angle = 0, Number sides = 6

Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 7

Option - Radius Circumscribed

Size = 30 , Angle = 0, Number sides = 8

Option - Radius Circumscribed

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointsToRegularPolygons <input_dataset> <out_feature_class> <number_sides> <Radius In | Radius Out | Side> <Size> <size_field> <rotation_angle>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<number_sides> An Integer defining the number of sides of the polygons to be created.

<Radius In | Radius Out | Side> Required. A String indicating the meaning of the <SIZE> parameter

Radius In - radius of the inscribed circle

Radius Out - radius of the circumscribed circle

Side - the side of the polygon

<Size> A Double representing the size (see above for options)

<size_field> A String representing the name of a field in the in the attribute table of the input dataset. The field has the values for the size of the polygons to be created.

{rotation_angle} A Double representing the rotation angle (see above)

Scripting syntax

ET_GPPointsToRegularPolygons (input_dataset, out_feature_class,number_sides,size_represents, size, size_field, rotation_angle)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToRegularPolygons(pInFC As IFeatureClass, sOutFName As String, iNumberSides As Integer, sSizeRepresents As String, Optional dSize As Double = 0, Optional sSizeField As String = "", Optional dRotationAngle As Double = 0)

As IFeatureClass

Copyright © Ianko Tchoukanski

Buffer Polylines

Go to ToolBox Implementation Go to .NET Implementation

Creates buffer polygons from the polylines of the input dataset. The user can specify the side of the polyline (Left, Right or

Both) on which the buffer to be created as well as the shape of the buffer at the end of the polylines - Round or Flat. The buffer

distance (in the units of the spatial reference of the input dataset) can be entered as a number (equal for all input polylines)or a

numeric field. No negative buffer distance is accepted.

Inputs:

A polyline feature layer

Buffer distance - a number (the same buffer distance will be used for all input polylines) or the name of a numeric

field in the polyline attribute table that has the buffer distance for each input polyline.

Side of the buffer:

Left - the buffer will be created only on the left side of the polylines (the physical orientation of the polyline is

used to define the side).

Right - the buffer will be created only on the right side of the polylines (the physical orientation of the polyline

is used to define the side).

Both - the buffer will be created only on the both sides of the polylines.

Shape of the buffer at the end of the polyline

Round - the buffer at the ends of the polyline will have a circular shape.

Flat - the buffer at the end of the polyline will be closed with a straight line passing through the start/end

point of the polyline

Dissolve option - the boundaries of the intersecting buffers will be dissolved. The original attributes will not be

preserved if the dissolve option is used.

Outputs:

New polygon feature class

Notes :

No buffers will be created for the polylines that have buffer distance less or equal to 0.

The attributes of the polylines will be transferred to the resulting polygons only if the Dissolve option is NOT used.

If the "Left" or "Right" option is used, no buffers will be created for the polylines for which the Left and Right buffers

intersect. The log file will contain a record for the IDs of the polylines for which the requested buffer could not be

created (see example below).

If the "Flat" option is used and the left and right boundary cannot be connected with a straight line with length equal

to 2 x the buffer distance, a round end will be created. The log file will contain a record for the IDs of the polylines for

which a "Flat" buffer could not be created (see example below).

Self-intersecting polylines will be simplified and each part will be buffered separately.

Examples:

Round buffer both sides (with dissolve option) Flat buffer both sides

Flat buffer on the left side Round buffer on the right side

Buffer on the left side cannot be created.
Round end will be created if a complete flat end cannot be

created.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBufferPolylines<input_dataset> <out_feature class> {buffer_distance_field} {buffer_distance} <Both | Left | Right>

<Round | Flat> <dissolve_buffers>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{buffer_distance_field} A String representing the name of a field in the in the attribute table of the input dataset field

name. The field has the values for the buffer distance to be used.

{buffer_distance} A Double representing the buffer distance (in the units of the spatial reference of the input dataset).

<buffer_side> A String representing the side of the polylines on which the buffers will be created. The available

options are: Left, Right and Both

<shape_end> Required. A String representing the shape of the buffer at the ends of the polylines. The available

options are:

Round - the buffer at the ends of the polyline will have a circular shape.

Flat - the buffer at the end of the polyline will be closed with a straight line passing

through the start/end point of the polyline

<dissolve_buffers> A Boolean. If True - the boundaries of the intersecting buffers will be dissolved.

Scripting syntax

ET_GPBufferPolylines(input_dataset, out_feature class,buffer_distance_field,buffer_distance, buffer_side, shape_end,

dissolve_buffers)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BufferPolylines(pInFC As IFeatureClass, sOutFName As String, sSideOption As String, sEndOption As String, Optional

sBufferDistanceField As String = "", Optional dBufferDistance As Double = 0, Optional bDissolveBuffers As Boolean = False)

As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Contour Gaps

Go to ToolBox Implementation Go to .NET Implementation

Cleans the gaps in a polyline dataset representing contours.

Inputs:

A Polyline dataset

A field representing the elevation value of the contours

Tolerance - the gaps smaller than this tolerance will be closed.

Outputs:

New polyline feature class. The gaps in the contours that a smaller then the selected tolerance are closed.

Notes:

The function is designed specifically for contours, but it can be used on datasets representing different features.

Always inspect the results before accepting them as valid.

Example :

Input Contours Resulting Polylines

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanContourGaps <input_dataset> <out_feature_class> <gap_size> <height_field>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

<height_field> A String - the name of the field having the elevation value of the contours.

<gap_size> A Double - the gaps smaller than this tolerance will be closed. The units of the parameter are in the spatial reference of the input feature class

Scripting syntax

ET_GPCleanContourGaps (input_dataset, out_feature_ class, gap_size, height_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanContourGaps(pInFC As IFeatureClass, sOutFName As String, ByVal dMaxGapToFill As Double, ByVal sElevationField As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Polyline

Go to ToolBox Implementation Go to .NET Implementation

Ensures topological correctness of a polyline feature data set.

Inputs:

A polyline feature layer

Fuzzy tolerance

Outputs:

New topologically correct Polyline feature class

Nodes will be created in all intersection points

Redundant data (vertices and nodes closer to each other than the fuzzy tolerance) will be eliminated.

Each set of duplicate lines (closer to each other than the fuzzy tolerance) will be replaced by a single polyline.

This polyline will carry the attributes of one of the original polylines

The attributes of the input data set are preserved.

Optional Polyline feature class that identifies the duplicates in the input data set.

The duplicates feature class has all the fields from the input data set.

The attributes of the polylines are these that have not been preserved in the clean feature class. Example:. If

two polylines with attributes "A" and "B" are running on top of each other. The clean feature class will contain

only one of them e.g. "A". The duplicates feature class will contain the other one -"B"

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the formulae (W + H) / 2000000

where W and H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Over and Under shoots, but it might lead to

unwanted approximation of the input shapes. The better option is to use Fuzzy tolerance close to the default and then

clean the remaining Dangling Nodes with the "Clean Dangling Nodes Wizard"

A Fuzzy tolerance of 0 may be used if the original shapes have to be preserved exactly the same. In this case only

the intersections will be created

Use Export Nodes Wizard to check the status of a data set. It will analyze the nodes of a polyline layer and will create

a Point feature class with classified nodes.

Example:

Input Layer (with analyzed nodes) After Clean (with analyzed nodes)

Duplicates layer (The Clean layer as a background)

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanPolyline <input_dataset> <out_feature class> <fuzzy_tolerance>{duplicates_feature_class}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

{fuzzy_tolerance} A Double setting the Fuzzy tolerance (in the units of the input dataset) to be used if the

{clean_polylines} is True. If {clean_polylines}is False this parameter is ignored

{duplicates_feature_class} A String - the full name of the output polyline feature class that identifies the polylines removed

as duplicates. (A feature class with the same full name should not exist)

Scripting syntax

ET_GPCleanPolyline (input_dataset, out_feature class, fuzzy_tolerance,duplicates_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanPolylines(pInFC As IFeatureClass, sOutFName As String, dFuzzy As Double, Optional sDuplicatesFName As String = "")

As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Dangling Nodes

Go to ToolBox Implementation Go to .NET Implementation

Cleans the dangling nodes from a polyline layer using user specified dangling tolerance

Inputs:

A polyline feature layer

Dangling tolerance

Outputs:

New polyline feature class

Over-shoots: All the Polylines having a Dangling node with length less than the dangling tolerance will be deleted

Under-shoots: All the Polylines having a Dangling node and length larger than the tolerance will be processed.

The function first checks whether the extension of the polyline in the direction of the segment containing the dangling node intersects existing polyline (within the specified tolerance) and if so extends the

segment to the intersection point

If the "Use closest node snap" option is selected the function checks whether the dangling node is closer than the tolerance specified to another node and if so, snaps it to that node.

If the "Use nearest feature snap" option is selected the function checks whether the dangling node is closer than the tolerance specified to another feature and snaps to the closest feature

If the dangling feature is snapped to another feature, the latest is split - a regular node created.

The attributes of the input data set are preserved.

Notes :

Use Export Nodes Wizard to check the status of a data set. It will analyze the nodes of a polyline layer and will create a Point feature class with classified nodes.

It is recommended before proceeding with cleaning the dangling nodes to use the Clean Polyline Wizard to ensure that all the polylines are intersected and the very small over and undershoots are cleaned with the Fuzzy

tolerance.

A Fuzzy tolerance of 0 may be used if the original shapes have to be preserved exactly the same. In this case only the intersections will be created

Examples:

Before Clean Dangles

After Clean

No "Node Snap" or 'Nearest Snap" used

After Clean

"Node Snap" used

After Clean

"Node Snap" and "Nearest Snap" used

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanDangle <input_dataset> <out_feature class> <dangling_tolerance> {closest_node_snap} {nearest_feature_snap}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<dangling_tolerance> A Double representing the tolerance to be used. The polylines with dangling nodes within distance smaller than this value to existing features (depending on the options used) will be

extended/snapped to the closest existing feature

{closest_node_snap} A Boolean - if True, the ends of the dangling polylines that could not be snapped to an existing polyline by extending in the direction of the last segment will be snapped (if the dangling node is

within a distance smaller than the <dangling_tolerance> to an existing node) to the closest existing node.

{nearest_feature_snap} A Boolean - if True, the ends of the dangling polylines that could not be snapped to an existing polyline by extending in the direction of the last segment or to an existing node will be snapped (if

the dangling node is within a distance smaller than the <dangling_tolerance> to an existing polyline) to the closest point of the closest polyline

Scripting syntax

ET_GPCleanDangle (input_dataset, out_feature class, dangling_tolerance, closest_node_snap, nearest_feature_snap)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanDangles(pInFC As IFeatureClass, sOutFName As String, dDanglingTol As Double, Optional bClosestNode As Boolean = False, Optional bNearest As Boolean = False, Optional dFuzzy As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Pseudo Nodes

Go to ToolBox Implementation Go to .NET Implementation

Combines polylines, which share a pseudo node, based on user specified attributes. The resulting polyline data set does not

contain multi-part polylines. The topology of the data set is preserved. The function works like the UNSPLIT command of

ArcEdit. The attribute update rules include range values update

Inputs:

A polyline feature layer

Fields to be used for dissolving

Update rules for the rest of the fields to be transferred

Outputs:

An aggregated polyline feature class

Only the polylines which share a pseudo node that have the same values for the dissolve fields will be aggregated

No multi-part polylines will be created.

The attributes will be transferred according the user specified rules. For the fields with no specified update rule, date

and blob fields, the aggregated feature will carry the attributes of the first feature.

Notes:

The Clean Pseudo Nodes Wizard has several advantages over the dissolve function of GeoProcessing Wizard:

Multiple dissolve fields can be used

Works like the UNSPLIT command of ArcEdit – Only the polylines which share a pseudo node that have the

same values for the dissolve fields will be aggregated

It preserves the topology of the polyline layer – no regular node will be removed as a result of the procedure. –

See example

The attribute update rules include rules to handle single and address ranges – See example

If multi-part features are already present in the layer to be dissolved, the Clean Pseudo Nodes Wizard will explode

them first. The attributes will be distributed as follows:

For the fields that the user has selected SUM as an update rule, the values will be proportionally distributed

between the parts

For the rest of the fields the attributes will be copied over.

It is recommended the Explode Wizard to be used before dissolve in order to ensure proper distribution of the attribute

values of the numeric fields.

If no dissolve field is selected, all the pseudo nodes will be removed without considering the attribute values.

Range attributes from string and numeric fields can be handled. The records that have range values containing non

numeric characters will be copied arbitrary to the resulting features.

Example:

Input Layer

Dissolve field = “Streetname”

After Dissolve:

Standard tool

The topology is destroyed – no node in the

intersection point of the two streets

After Clean Pseudo Nodes:

ET GeoWizards

Update rules:

L_F_ADD – Address Range –Paired field – L_T_ADD

R_F_ADD – Address Range –Paired field – R_T_ADD

Preserved topology. Address ranges updated correctly

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanPseudo <input_dataset> <out_feature class> <dissolve_field_list> {Update_Rules_List}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{dissolve_field_list} A String - a list of field names to be used for dissolving.

{Update_Rules_List} A String - a list of fields with their update rules.

Scripting syntax

ET_GPCleanPseudo (input_dataset, out_feature class, "dissolve_field; dissolve_field","field update_rule; field update_rule;

field update_rule")

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\streets.shp"

result = "C:\\data\\fgdb_test.gdb\\dissolved"

arcpy.gp.ET_GPCleanPseudo (input_dataset, result, "Name;Type", "Meters Sum; Suburb First; L_F_ADD Range Address

L_T_ADD ;L_T_ADD Range Address L_F_ADD")

.NET implementation

(Go to TOP)

CleanPseudoNodes(pInFC As IFeatureClass, sOutFName As String, dissolveFields As List(Of String), Optional updateRules

As Dictionary(Of String, String) = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Densify

Go to ToolBox Implementation Go to .NET Implementation

Densifies (adds vertices to polyline at a user-specified tolerance) the features of a polyline layer.

Inputs:

A polyline feature layer

Curves simplification method

Using deviation distance

Using deviation angle

Maximum segment length

Deviation value (Have no impact if there are no curve segments in the polylines - in most of the cases can be set to 0

Outputs:

New polyline feature class

The output feature class will contain all the features of the original data set

If the "Densify selected" option is used, only selected polylines will be densified, the rest will preserve their

original shape.

The attributes of the input data set are preserved.

Notes :

The Deviation value parameter has no impact if there are no curve segments in the polylines - in most of the cases

can be set to 0 (default)

The function uses the standard ArcObjects methods which are fast and efficient.

For more information see Densify and DensifyByAngle methods in ArcObjects Developer Help.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPDensify <input_dataset> <out_feature class> <max_segment_length> <deviation_value>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<max_segment_length> A Double representing the Maximum segment length

<deviation_value> A Double representing the Deviation value (Has no impact if there are no curve segments in the

polylines - in most of the cases can be set to 0)

Scripting syntax

ET_GPDensify (input_dataset, out_feature class, max_segment_length, deviation_value)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

Densify(pInFC As IFeatureClass, sOutFName As String, dMaxSegmentLength As Double, Optional dDeviation As Double = 0)

As IFeatureClass

Copyright © Ianko Tchoukanski

Export Nodes

Go to ToolBox Implementation Go to .NET Implementation

Analyzes the nodes of a polyline layer and exports them as a point feature class.

Inputs:

A polyline feature layer

Types of nodes to be exported

Outputs:

New point feature class

Contains points representing the specified node types

Regular nodes - node where more than two polylines intersect

Pseudo nodes - occur where a single line connects with itself or where only two polylines intersect

Dangling nodes - unconnected nodes of a dangling polylines

Several fields are added to the point attribute table :

[ET_Type] - the type of node.

[ET_Valency] - the number of polylines that connect in the node. For a Dangling node Valency = 1,

for a Pseudo node Valency = 2, for a Regular node Valency >=3

[PL_FID1], [PL_FID2] ...[PL_FIDn] carrying the IDs of the polylines that intersect in the node

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPExportNodes <input_dataset> <out_feature class> <link_field> {export_dangling} {export_pseudo} {export_regular}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<link_field> A String representing the name of the field that will be attached to the point attribute table. If for

example the function is used to export the nodes of a street dataset and the "StreetName" is the field

name to be used for each point in the point attribute table will be recorded all the streets that intersect

in this node.

{export_dangling} A Boolean indicating whether the dangling nodes will be exported

{export_pseudo} A Boolean indicating whether the pseudo nodes will be exported

{export_regular} A Boolean indicating whether the regular nodes will be exported

Scripting syntax

ET_GPExportNodes (input_dataset, out_feature class, link_field, export_dangling, export_pseudo, export_regular)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ExportNodes(pInFC As IFeatureClass, sOutFName As String, sLinkField As String, Optional bDangling As Boolean = True,

Optional bPseudo As Boolean = True, Optional bRegular As Boolean = True) As IFeatureClass

Copyright © Ianko Tchoukanski

Flip Polylines

Changes the direction of the polylines from a polyline layer based on user defined start point.

Inputs:

A polyline feature layer

Start Point to be used

Outputs:

New Polyline feature class - all polylines have their from node closer to the user specified start

points

Notes :

The corners and the middle points of the smallest bounding rectangle of each polyline are used

Examples:

Start Point Result Start Point Result

SW NE

W E

NW SE

N S

Copyright © Ianko Tchoukanski

Generalize

Go to ToolBox Implementation Go to .NET Implementation

Generalizes (reduces the number of vertices required to represent a polyline) the features of a polyline layer using the

Douglas-Poiker algorithm

Inputs:

A polyline feature layer

Generalize tolerance (maximum offset) - the maximum distance that the generalized polyline will differ from the

original one

Outputs:

New polyline feature class

The output feature class will contain all the features of the original data set

If the "Generalize selected" option is used, only selected polylines will be generalized, the rest will preserve

their original shape.

The attributes of the input data set are preserved.

Notes :

The function uses the standard ArcObjects method which is fast and efficient.

For more information see Generalize method in ArcObjects Developer Help.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPGeneralize <input_dataset> <out_feature_class> <generalize_tolerance>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<generalize_tolerance> A Double representing Generalize tolerance (maximum offset) - the maximum distance that the

generalized polyline will differ from the original one

Scripting syntax

ET_GPGeneralize (input_dataset, out_feature_class, generalize_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

GeneralizePolylines(pInFC As IFeatureClass, sOutFName As String, dGenTol As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Polyline Global Snap

Go to ToolBox Implementation Go to .NET Implementation

Snaps the features of a polyline layer to another layer (Point, Polyline or Polygon)

Inputs:

A polyline layer to be snapped

A snap layer - point, polyline or polygon

Snap tolerance

Snap options1 (Snap What)

Snap options2 (Snap To What)

Snap to reference Z values (only if the input and output are Z enabled)

Outputs:

A polyline feature class - the polylines from the source layer will be moved to snap to the features of the Snap Layer (if within the

snap tolerance)

Options:

Snap Options 1 (Snap What) - this options lets the user set which elements of the source polylines to be used for snapping

Nodes: Only nodes (end points) of the polylines will be snapped

Vertices: All the vertices of the source polylines will be used.

Insert Vertices: This option will get the vertices from the features of the snap layer and will insert new vertices into the

source polylines. The new vertices together with the original ones will be used for snapping. This option is slower than

the other ones, but gives the best snapping results especially if the polylines to be snapped have much less vertices

than the ones from the Snap layer.

Snap Options 2 (Snap To What)

Vertices: The polylines will be snapped to the nearest vertex of the nearest feature from the Snap layer

Nearest edge: The polylines will be snapped to the nearest point of the nearest feature from the Snap layer

Vertices & Edges: If there is a vertex closer than the snap tolerance to the polylines (their elements defined in Options

1) to be snapped, the polyline will snap to it, otherwise it will snap to the nearest edge.

Snap to Z

Notes:

The snap distance should be in the units of the input dataset.

The Source and the Snap datasets can have different spatial references as long as they have the same Geographic Coordinate

systems.

Example: Red - Source Polyline; Black - Snap Polyline; Green - Snapped Polyline

Before Snap

After Snap

Option1: Nodes

Option2: Vertices

After Snap

Option1: Vertices

Option2: Vertices

After Snap

Option1: Insert Vertices

Option2: Vertices & Edges

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSnapPolylines <input_dataset> <Reference_dataset> <out_feature class> <snap_tolerance> <snap_what> {snap_to_vertices}

{snap_to_nearest}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<Reference_dataset> A Point, Polyline or Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<snap_tolerance> A Double representing the Search tolerance (in the units of the input_dataset) to be used

<snap_what> A String indicating what parts of the input polylines will be snapped. Possible values:

Nodes: Only nodes (end points) of the polylines will be snapped

Vertex: All the vertices of the source polylines will be used.

Insert: This option will get the vertices from the features of the Reference_dataset and will insert

new vertices into the source polylines. The new vertices together with the original ones will be used

for snapping. This option is slower than the other ones, but gives the best snapping results

especially if the polylines to be snapped have much less vertices than the ones from the

Reference_dataset.

{snap_to_vertices} A Boolean indicating whether snapping to the closest vertex of the nearest feature from the

Reference_dataset to be used

{snap_to_nearest} A Boolean indicating whether snapping to the nearest point of the nearest feature from the

Reference_dataset to be used

Scripting syntax

ET_GPSnapPolylines (input_dataset, Reference_dataset, out_feature_ class, snap_tolerance, snap_what,snap_to_vertices,

snap_to_nearest)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SnapPolylines(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String, dSnapTol As Double, sSnapWhat As String,

Optional bVertex As Boolean = False, Optional bNearest As Boolean = False, Optional bSnapToZ As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

PolylineZ Characteristics

Go to ToolBox Implementation Go to .NET Implementation

Calculates several characteristics of PolylineZs. The results are stored in fields in the polyline attribute table.

The results are stored in the attribute table of the input layer or in a new feature class

Inputs:

A PolylineZ feature layer

Linear precision - the number of digits after the decimal point for linear measures

Angular precision - the number of digits after the decimal point for angular measures

NODATA value - a number that represents undefined Z values. If the Z values of a geometry are interpolated from a

surface and some of the vertices of the geometry are outside of the extent of the surface, they will not have Z values.

Since ArcGIS does not accept NaN (Not a Number) values in Z enabled shapes, a numeric value is assigned to these

vertices. If the Features To 3D function of ET GeoWizards is used to derive the Z values, the NODATA value is

999999. When calculating Z characteristics this values need to be ignored. Segments that have a vertex with

NODATA Z value will be ignored in the calculations.

Outputs:

The results are stored in the attribute table of the input dataset or in a new feature class. The linear measures are in the units

of the spatial reference of the input dataset. The slope is measured in decimal degrees (from -90 to +90). The following fields

are added to the attribute table

[3D_Length] - the true 3D length of the polyline

[2D_Length] - the 2D length of the polyline

[Max_Z] - Maximum Z value

[Min_Z] - Minimum Z value

[Len_Up] - distance uphill

[Len_Down] - distance downhill

[H_Up] - total increase in height

[H_Down] - total decrease in height

[Av_S_Up] - average slope uphill

[Max_S_Up] - maximum slope uphill

[Av_S_Down] - average slope downhill

[Max_S_Down] -maximum slope downhill

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPGetZChars<input_dataset> <out_feature class> {linear_precision} {angular_precision} {nodata}

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{linear_precision} A Double - the number of digits after the decimal point for linear measures.

{angular_precision} A Double - the number of digits after the decimal point for angular measures.

{nodata} A Double - represents undefined Z values.

Scripting syntax

ET_GPGetZChars(input_dataset, out_feature class,linear_precision,angular_precision, nodata)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

GetZCharacteristics(pInFC As IFeatureClass, sOutFName As String,Optional iLinearPrecision As Short = 2, Optional

iAngularPrecision As Short = 2, Optional dNodata As Double = 999999999) As IFeatureClass

Copyright © Ianko Tchoukanski

Renode

Go to ToolBox Implementation Go to .NET Implementation

Analyzes the nodes of a polyline layer and exports them as a point feature class. Creates links between the nodes and

corresponding polylines

Inputs:

A polyline feature layer

Outputs:

New point feature class

Contains points representing polyline nodes

Regular nodes - node where more than two polylines intersect

Pseudo nodes - occur where a single line connects with itself or where only two polylines intersect

Dangling nodes - unconnected nodes of dangling polylines

Two fields are added to the point attribute table :

[ET_Type] - the type of node.

[ET_Valency] - the number of polylines that connect in the node. For a Dangling node Valency = 1,

for a Pseudo node Valency = 2, for a Regular node Valency >=3

[ET_NodeId] - the ID of the nodes allowing link to the original polylines

Two fields are added to the original polyline attribute table

[ET_FNode] - the id of the From Node of the polyline - links to a point in the Node feature class

[ET_TNode] - the id of the To Node of the polyline - links to a point in the Node feature class

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRenode <input_dataset> <nodes_dataset>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<nodes_feature_class> A String - the full name of the output point feature class (A feature class with the same full name

should not exist)

Scripting syntax

ET_GPRenode (input_dataset, nodes_dataset)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RenodePolylines(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Smooth Polyline

Go to ToolBox Implementation Go to .NET Implementation

Smooth the features of a polyline layer using three different smoothing algorithms

Inputs:

A polyline feature layer

Smooth method

Bezier curve

The curve in general does not pass through any of the control points (vertices of original polyline)

except the first and last.

The curve is always contained within the convex hull of the control points

Approximate the original shape rather freely

Fast - good for polylines with many vertices (control points) that will constrain the curve close to the

original shape

B - Spline

The curve does not pass through any of the control points (vertices of original polyline) except the

first and last

Follows better than the Bezier curve the original shape

Depending on the "Freedom" parameter the smoothing occurs only in the areas close to a vertex

B-Splines lie in the convex hull of the original polyline

Slower than the Bezier curve, but the results in many cases are much better

T - Spline (Tension Spline)

The curve passes trough all the vertices of the original polyline

The degree of fit can be controlled with the "Tension" parameter

Suitable for smoothing curves with comparatively equally spaced vertices

Fast with good approximation of the original polyline

Parameters depending on the method

The "Smoothness" parameter (Used in all methods) defines the number of points in the output curve. The

allowed values (2 to 20) in fact are point multiplier. The number of vertices of the original polyline multiplied

by this value will give the number of vertices of the smoothed polyline. The larger the value of the

Smoothness parameter, the slower the process will be. In most of the cases a value of 5 (default) will create

smooth and representative polyline

The "Freedom" parameter (B-Spline only) defines how close to the original polyline the curve will be. The

allowed values are from 3 to 10. Smaller values give better approximation. With large values the curve will

become very similar to Bezier curve

The "Tension" parameter (T-Spline only) defines how close to the original polyline the curve will be.

Increasing the tension is similar to pulling on the ends of a string constrained to pass through the polyline

vertices. allowed values are from 1 to 100.

Optional - Densification tolerance. In some cases the smooth parameters cannot restrict the smoothing enough. The

user can restrict the effect of the smoothing by introducing new vertices in the shapes. See Densify function for details

Optional - Generalization tolerance. The smoothing introduces in the shapes many new vertices. The user can

decrease the number of vertices by using this option. See Generalize function for details.

Outputs:

New polyline feature class

The output feature class will contain all the features of the original data set

If the "Smooth selected" option is used, only selected polylines will be smoothed, the rest will preserve their

original shape.

The attributes of the input data set are preserved.

Notes :

With all methods the Start and End point of the polylines are preserved

All the methods implement generic algorithms.

The Generalization and Densification tolerances should be specified in the units of the spatial reference of the input

feature class

Examples:

Smooth results: Dashed - Original; Red - Bezier; Green - B-Spline; Blue- T-Spline (Default

parameters)

Bezier

B-Spline

Green - Freedom

= 3

Blue - Freedom =

5

T-Spline

Green - Tension =

30

Blue - Tension =

90

ToolBox implementation

(Go to TOP)

Command line syntax - ET_GPSmoothBezier

ET_GPSmoothBezier <input_dataset> <out_feature class> <smoothness>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<smoothness> An Integer that defines the number of points in the output curve. The allowed values (2 to 20) in fact

are point multiplier. The number of vertices of the original polyline multiplied by this value will give the

number of vertices of the smoothed polyline. The larger the value of the <smoothness> parameter, the

slower the process will be.

Scripting syntax - ET_GPSmoothBezier

ET_GPSmoothBezier (input_dataset, out_feature class, smoothness)

Command line syntax - ET_GPSmoothBSpline

ET_GPSmoothBSpline <input_dataset> <out_feature class> <smoothness> <freedom>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<smoothness> An Integer that defines the number of points in the output curve. The allowed values (2 to 20) in fact

are point multiplier. The number of vertices of the original polyline multiplied by this value will give the

number of vertices of the smoothed polyline. The larger the value of the <smoothness> parameter, the

slower the process will be.

<freedom> An Integer that defines how close to the original polyline the curve will be. The allowed values are from

3 to 10. Smaller values give better approximation. With large values the curve will become very similar

to Bezier curve

Scripting syntax - ET_GPSmoothBSpline

ET_GPSmoothBSpline (input_dataset, out_feature class, smoothness, freedom)

Command line syntax - ET_GPSmoothBSpline

ET_GPSmoothTSpline <input_dataset> <out_feature class> <smoothness> <tension>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<smoothness> An Integer that defines the number of points in the output curve. The allowed values (2 to 20) in fact

are point multiplier. The number of vertices of the original polyline multiplied by this value will give the

number of vertices of the smoothed polyline. The larger the value of the <smoothness> parameter, the

slower the process will be.

<tension> An Integer that defines how close to the original polyline the curve will be. Increasing the tension is

similar to pulling on the ends of a string constrained to pass through the polyline vertices. allowed

values are from 1 to 100.

Scripting syntax - ET_GPSmoothBSpline

ET_GPSmoothTSpline (input_dataset, out_feature class, smoothness, tension)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SmoothBSpline(pInFC As IFeatureClass, sOutFName As String, iSmoothness As Short, iFreedom As Short, sPolylinesType

As String) As IFeatureClass

SmoothTSpline(pInFC As IFeatureClass, sOutFName As String,iSmoothness As Short, iFreedom As Short, sPolylinesType As

String) As IFeatureClass

SmoothBezier(pInFC As IFeatureClass, sOutFName As String, iSmoothness As Short, sPolylinesType As String) As

IFeatureClass

Copyright © Ianko Tchoukanski

Split Polyline Wizard

Go to ToolBox Implementation Go to .NET Implementation

Splits the features of a polyline layer.

Inputs:

A polyline layer which features are to be split

A method to be used for splitting

In all vertices

Equal segments

Segments length - two options available

Exact length + remainder - the polylines will be split using the exact length specified by the user. The

last segment will have length equal to the remainder of the splitting. For example if a polyline with

length = 60 meters is split using length of 25 meters, three segments with lengths 25, 25 and 10 will

be created.

Equal Length - the user specified length is adjusted in order all resulting segments to have equal

length. For example if a polyline with length = 60 meters is split using length of 25 meters, two

segments with lengths of 30 meters will be created.

Number of vertices per feature

Attribute update rules for each field

Outputs:

A polyline feature class - new node created in each split point. The attributes will be distributed according the user

specified attribute update rules.

Notes:

Range attributes from string and numeric fields can be handled. The records that have range values containing non

numeric characters will be copied to the resulting features.

If the "Split selected features only" option is selected only the selected features from the input layer will be split.

If the Segment length method is used

all the segments will have the user specified length except for the last one

if the assigned length is larger than the length of a specific polyline, the polyline will be copied to the output as

is

the splitting starts always from the start points (From Node) of the polylines

Examples:

Before Split Split in all Vertices Split in equal segments Split with segment length

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSplitPolylines<input_dataset> <out_feature_class> <NumberIntervals | NumberVertices | SegmentLength |

EqualLength | Vertex> <split_tolerance>

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<NumberIntervals |

NumberVertices |

SegmentLength |

EqualLength | Vertex>

A String - the split option to be used.

<split_tolerance> Required. A Double representing depending on the option selected:

"Vertex" - not used.

"NumberIntervals" - the number of segments

"SegmentLength" - the length of the segments

"EqualLength" - the length of the segments

"NumverVertices"- the number of vertices per segment

{Update_Rules_List} A String - a list of fields with their update rules.

Scripting syntax

ET_GPSplitPolylines(input_dataset, out_feature_class, split_option, split_tolerance, Update_Rules_List)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\streets.shp"

result = "C:\\data\\fgdb_test.gdb\\split"

arcpy.gp.ET_GPSplitPolylines (input_dataset, result, "SegmentLength",50, "Meters Proportion; Suburb Copy; L_F_ADD

Range Address L_T_ADD ;L_T_ADD Range Address L_F_ADD")

.NET implementation

(Go to TOP)

SplitPolylines(pInFC As IFeatureClass, sOutFName As String, sSplitOption As String, Optional dSplitTol As Double = 0,

Optional updateRules As Dictionary(Of String, String) = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Split Polyline With Layer

Go to ToolBox Implementation Go to .NET Implementation

Splits a polyline layer with the features of a Point, Polyline or Polygon layer.

Inputs:

A polyline layer which features are to be split

A point, polyline or polygon layer which features will be used for splitting

Attribute update rules for each field

Search distance (Only if a point layer is used as a split layer)

Outputs:

A polyline feature class - a node created in each intersection point between the features from the input polyline layer and the split layer.

Notes:

The two layers should have the same Spatial Reference

Range attributes from string and numeric fields can be handled.The records that have range values containing non numeric characters will be copied to the

resulting features.

If a point layer is used as a split layer only the points that are within the search tolerance from the features of the input polyline layer will be used for

splitting.

Examples:

 Before Split After Split

Polyline Layer with Polyline Layer.

Attributes updated with Range Address split rule

Polyline Layer with Point Layer

Only the points within the search tolerance from the polylines are

used.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSplitPolylinesWithFeatureClass <input_dataset> <Split_dataset> <out_feature_class> {search_tolerance}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<Split_dataset> A Point, Polyline or Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

{search_tolerance}
A Double representing the Search tolerance (in the units of the input dataset) to be used. Ignored if the split feature class is of Polyline

or Polygon type

{Update_Rules_List} A String - a list of fields with their update rules.

Scripting syntax

ET_GPSplitPolylinesWithFeatureClass (input_dataset, Split_dataset, out_feature_class, search_tolerance, Update_Rules_List)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\streets.shp"

split_dataset = "C:\\data\\fgdb_test.gdb\\pg2"

result = "C:\\data\\fgdb_test.gdb\\split"

arcpy.gp.ET_GPSplitPolylinesWithFeatureClass (input_dataset, split_dataset , result, 50, "Meters Proportion; Suburb Copy; L_F_ADD Range Address L_T_ADD

;L_T_ADD Range Address L_F_ADD")

.NET implementation

(Go to TOP)

SplitPolylinesWithFeatureClass(pInFC As IFeatureClass, pSplitFC As IFeatureClass,sOutFName As String, Optional dSearchTol As Double = 0, Optional

updateRules As Dictionary(Of String, String) = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Polyline Characteristics

Go to ToolBox Implementation Go to .NET Implementation

Calculates some characteristics of the polylines from a polyline dataset

Inputs:

A Polyline feature class

Outputs:

The results can be added to the input feature class or a new polygon feature class. All attributes of the original

features are preserved

New fields added to the attribute table

ET_Sinous - the sinuosity of the polyline calculated as ratio of the length of the polyline and the length of the

line connecting the start and end points of the polyline. The value ranges from 1 (case of straight line) to

infinity (case of a closed polyline). In case of infinity a 0 is recorded in the attribute table. See illustration

below.

ET_Vert - the number of vertices of the polyline

ET_Dir - the general direction of the polyline - the direction in decimal degrees measured in North Azimuth

of the line connecting the start and end points of the polyline (see illustration below).

ET_Parts - the number of parts that the polyline has

ET_HasArcs - if the polyline has true arc segments - 1 otherwise - 0

ET_Closed - - if the polyline is closed - 1 otherwise - 0

ET_Fract - the fractal dimension (indication of the complexity) of the polyline. The value is between 1 and 2.

The more complex the polylineis the larger the fractal dimension will be.

Notes:

Fractal Dimension of the polylines is calculated using the Box Counting method (1)

Calculating the Fractal Dimension is time consuming. If you don't need this characteristic, uncheck the option for

faster processing.

Illustration:

References:

1. Bourke, P., 1993. Fractal Dimension Calculator User Manual, Online. Available: http://paulbourke.net/fractals/fracdim/

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolylineCharacteristics <input_dataset> {fractal_dimension} {precision}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer.

{fractal_dimension} A Boolean indicating whether to calculate fractal dimension or not.

{precision} An Integer between 0 and 8 representing the number of places after the decimal point to be used.

Scripting syntax

ET_GPPolylineCharacteristics (input_dataset, fractal_dimension, precision)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolylineCharacteristics(pInFC As IFeatureClass, Optional bCalculateFract As Boolean = False, Optional iPrecision As Short =

2) As Boolean

Copyright © Ianko Tchoukanski

Flip PolylineZ

Go to ToolBox Implementation Go to .NET Implementation

Changes the directions of the polylines from a PolylineZ dataset. In the resulting feature class the polylines will be oriented Up

Slope (start from the node with the lower Z value and finis at the node with higher Z value) or Down Slope (start from the node

with the higher Z value and finis at the node with lower Z value)

Inputs:

A PolylineZ feature layer

Flip Option

Outputs:

A PolylineZ feature class.

A field called ET_Status will be added to the attribute table. The values in this field will indicate whether a

polyline has been flipped ("Flipped") or not ("Original")

Example:

Input Dataset

Flipped - Down Slope option

Flipped - Up Slope option

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFlipPolylineZ <input_dataset> <out_feature class> <direction>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<direction> A String indicating the direction of the output PolylineZs - Allowed values - "Down Slope" and "Up Slope"

Scripting syntax

ET_GPFlipPolylineZ (input_dataset, out_feature class, direction)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FlipPolylineZ(pInFC As IFeatureClass, sOutFName As String, sDirection As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Advanced Merge

Go to ToolBox Implementation Go to .NET Implementation

Merges two polygon data sets. The result does not contain overlaps

Inputs:

Base layer - a polygon layer that will keep all attribute fields

Merge layer - a polygon layer that will be merged to the Base layer.

Priority of the Merge layer as described below

Priority - "Erase" - the polygons from the Base layer are erased with the polygons of the Merge layer

Priority - "Low" - only the polygons (or portions of them) from the Merge layer that do not overlap with these of the Base layer are added to the new layer

Priority - "Standard" - Creates intersections where the polygons from the Merge layer intersect these from the base layer. The intersection polygons carry the attributes of the corresponding polygons from both

layers

Priority - "High" - The polygons from the Merge layer are entirely preserved. Only these polygons (or portions of them) from the base layer that do not overlap with the polygons from the Merge layer are added to

the output.

Outputs:

New Polygon feature class

No overlaps present. The polygons from the Base and the Merge layers are overlaid depending the priority of the Merge layer

All the attributes of the Base layer are preserved

Only the attributes in fields with the same name and type as these from the Base layer are preserved for the features from the Merge layer. Exception makes priority "Standard" which copies the attributes from the

merge layer as well.

Base layer always have a Priority "Standard"

Examples:

Input Layers

Base layer table

Merge layer table

Result: Priority of "-1" (Erase)

Result table

Result: Priority of "0" (Low)

Result table

Result: Priority of "1" (Standard)

Result table

Result: Priority of "2" (High)

Result table

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPAdvancedMerge <input_dataset> <merge_dataset> <out_feature class> <merge_priority> {fuzzy_tolerance}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<merge_dataset> A Polygon feature class or feature class.

NOTE: The spatial references of <merge_dataset> and the <input_dataset> must have the same Geographic Coordinate System

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<merge_priority> Required. A string representing the priority of the polygons to be merged

Priority of Erase - the polygons from the Base dataset are erased with the polygons of the Merge dataset

Priority of Low - only the polygons (or portions of them) from the Merge dataset that do not overlap with these of the Base layer are added to the new dataset

Priority of Standard - Creates intersections where the polygons from the Merge dataset intersect these from the base layer. The intersection polygons carry the attributes of the

corresponding polygons from both datasets

Priority of High - The polygons from the Merge dataset are entirely preserved. Only these polygons (or portions of them) from the base dataset that do not overlap with the polygons

from the Merge dataset are added to the output.

{fuzzy_tolerance} A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPAdvancedMerge (input_dataset, merge_dataset, out_feature class, merge_priority, fuzzy_tolerance)

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

merge_dataset = "C:\\data\\fgdb_test.gdb\\pg2"

result = "C:\\data\\fgdb_test.gdb\\erased"

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx");

arcpy.ET_GPAdvancedMerge(input_dataset, merge_datase, result, "Erase", "0.003426878")

.NET implementation

(Go to TOP)

AdvancedMerge(pInFC As IFeatureClass, pMergeFc As IFeatureClass, sOutFName As String, sMergePriority As String, dFuzzy As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Aggregate Polygons

Go to ToolBox Implementation Go to .NET Implementation

Combines the polygons that are within the user specified distance into new polygons. Can be used also to generalize buildings.

Inputs:

A polygon feature class

Aggregation distance. The polygons that are closer to each other than this distance will be combined

Minimum area of the holes to be preserved - all holes with area less than this tolerance will be removed.

Outputs:

New polygon feature class

Notes:

The new feature class will not have any attributes. The Transfer Attributes function can be used to get summarized attributes from the original polygons.

The Aggregation distance and the Minimum area of holes should be specified in the units of the spatial reference of the input feature class

If no Minimum area of holes is specified only the holes with area smaller than 2 x Aggregation distance x Aggregation distance will be removed

The function is CPU and RAM intensive. Using it on large datasets might need long processing time.

Examples:

General polygons

Input Dataset Result (No Minimum area of holes specified) Result (Minimum area of holes specified)

Buildings

Input Dataset Aggregate distance = 1 meter Aggregate distance = 5 meters Aggregate distance = 10 m Aggregate distance = 20 m

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPAggregatePolygons <input_dataset> <out_feature_class> <Aggregate_tolerance> <area_tolerance>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<Aggregate_tolerance> A Double representing the aggregation distance. The polygons that are closer to each other than this distance will be combined

<area_tolerance> A Double representing the minimum area of holes to be preserved. All holes with area less than this tolerance will be removed.

Scripting syntax

ET_GPAggregatePolygons (input_dataset, out_feature_class, Aggregate_tolerance,area_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\aggregated"

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

arcpy.ET_GPAggregatePolygons(input_dataset, result, 10.00, 1000.00)

.NET implementation

(Go to TOP)

AggregatePolygons(pInFC As IFeatureClass, sOutFName As String, dAggregateTol As Double, Optional dAreaTol As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Build Polygon

Go to ToolBox Implementation Go to .NET Implementation

Builds polygon feature class from a polyline layer

Inputs:

A polyline feature layer

Optional point dataset that represents polygon labels and is to be used for attaching attributes to the resulting

polygons.

Outputs:

New polygon feature class

Notes :

The process goes through several steps

Cleans the polyline theme with user specified Fuzzy tolerance - creates intersections and removes duplicate

polylines. It is highly recommended the polyline layer to be cleaned beforehand with the Clean Polyline

Wizard.

During the second step the process removes all non polygon elements. All the polylines having a dangling

node will be removed. Note that the function do not make an attempt to snap the dangling nodes to the closest

polylines, therefore it is very important to use Clean Dangling Nodes function in order to be ensured that there

will be no loss of data. The process of removing non polygon elements might go through several iterations,

because in many cases removing one dangling polyline makes another polyline dangling.

The third step is the actual building of the polygons

The forth step cleans the resulting polygon feature class from some minor inconsistencies

Although not required three data preparation steps are very important as mentioned above

Use Clean Polyline function to clean the input polyline data set.

Use Clean Dangling Nodes function to clean all dangling polylines.

Use Export Nodes function to verify that all the polylines are correctly connected.

Example:

Source Polyline Layer Result Polygon Layer

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBuildPolygons <input_dataset> <out_feature class> {clean_polylines} {fuzzy_tolerance}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

 {clean_polylines} A Boolean indicating whether the input polyline dataset will be cleaned before building.

{fuzzy_tolerance} A Double setting the Fuzzy tolerance (in the units of the input dataset) to be used if the

{clean_polylines} is True. If {clean_polylines}is False this parameter is ignored

{label_points} A point feature class or feature layer to be used as a source for the polygon attributes.

Scripting syntax

ET_GPBuildPolygons (input_dataset, out_feature class, clean_polylines, fuzzy_tolerance,label_points)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BuildPolygons(pInFC As IFeatureClass, sOutFName As String, Optional bCleanPolylines As Boolean = True, Optional dFuzzy

As Double = 0, Optional pLabelFC As IFeatureClass = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Gaps

Go to ToolBox Implementation Go to .NET Implementation

Finds the gaps between polygons and holes within polygons and fills them with new polygons.

Inputs:

A polygon feature layer

Outputs:

New polygon feature class with all the gaps converted to polygons.

New field is added to the attribute table :

[ET_Gap] - the newly added polygons have value - "Gap"

Notes :

The Eliminate function can be used to join the gaps to the neighboring polygons

Examples:

Before Clean Gaps After Clean Gaps

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanGaps <input_dataset> <out_feature_class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPCleanGaps (input_dataset, out_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanGaps(pInFC As IFeatureClass, sOutFName As String, Optional bCleanPolygons As Boolean = False, Optional dFuzzy

As Double = 0.000001) As IFeatureClass

Copyright © Ianko Tchoukanski

Clean Polygon

Go to ToolBox Implementation Go to .NET Implementation

Ensures topological correctness of a polygon feature data set.

Inputs:

A polygon feature layer

Fuzzy tolerance

Outputs:

New topologically correct Polygon feature class (no overlaps present)

Redundant data (overlaps and gaps smaller than the fuzzy tolerance) will be eliminated

The overlaps greater than the fuzzy tolerance are converted into new polygons.

Every new polygon carries the attributes of one of the source overlapping polygons

The attributes of the input data set are preserved

Optional Point feature class that identifies the overlaps in the input data set. Several fields are added to the point attribute table

enabling the user to identify the overlapping polygons in this location :

[Num_Over] - the number of overlapping polygons in this location.

[Old_FID1], [Old_FID2] ...[Old_FIDn] carrying the original IDs of the overlapping polygons

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the formulae (W + H) / 2000000 where W and

H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Gaps and Slivers, but it might lead to unwanted

approximation of the input shapes. The better option is to use Fuzzy tolerance close to the default and then clean the remaining

Gaps and Slivers with the "Clean Gaps Wizard" and 'Eliminate Wizard"

A Fuzzy tolerance of 0 may be used if the original shapes have to be preserved exactly the same. In this case all the overlaps

will be converted into new polygons.

Example:

Input Layer After Clean

Detail A before Clean Detail A after Clean

Attribute tables

Input table

Result table

Overlaps table

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCleanPolygon <input_dataset> <out_feature class> <fuzzy_tolerance>{overlaps_feature_class}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

{fuzzy_tolerance} A Double setting the Fuzzy tolerance (in the units of the input dataset) to be used if the {clean_polylines} is

True. If {clean_polylines}is False this parameter is ignored

{overlaps_feature_class} A String - the full name of the output point feature class that identifies the overlaps in the input feature

class. (A feature class with the same full name should not exist)

Scripting syntax

ET_GPCleanPolygon (input_dataset, out_feature class, fuzzy_tolerance,overlaps_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CleanPolygons(pInFC As IFeatureClass, sOutFName As String, dFuzzy As Double,Optional sOverlapsFName As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Create Centerlines

Go to ToolBox Implementation Go to .NET Implementation

Not available in the versions of ET GeoWizards for ArcGIS 8.x

Creates centerlines from polygon features.

Inputs:

A polygon feature class.

Maximum Width.

Minimum Width.

Centerline type

Inside - the centerlines will be created inside the polygons - suitable for deriving centerlines from rivers and streets represented by polygons

Outside - the centerlines will be created in the gaps between polygons - suitable for deriving street centerlines from cadastral data.

Outputs:

New polyline feature class

Notes:

If the "Inside" option is used, the input polygons should represent linear by nature features (rivers, roads, etc.)

If the "Outside" option is used, the gaps between the input polygons should represent linear by nature features (streets, etc.)

The new feature class will not have any attributes.

Maximum and Minimum widths should be specified in the units of the spatial reference of the input feature class

Use reasonable for your data Maximum and Minimum widths.

The results might contain some unwanted lines. Inspect the results and remove undesired features.

An option is available for smoothing the resulting centerlines. It is recommended not to use this option, but use the Smooth Polylines function after inspecting the results.

The function is CPU and RAM intensive. Using it on large datasets might need long processing time.

Examples:

Centerlines Inside Polygons

Input Dataset Result Result (Detail)

Centerlines Outside Polygons

Input Dataset Result Result (Detail)

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCreateCenterlines <input_dataset> <out_feature class> <maximum_width> <minimum_width> <centerlines_type> {smooth_centerlines}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<maximum_width> A Double representing the aggregation distance. The polygons that are closer to each other than this distance will be combined

<minimum_width> A Double representing the minimum area of holes to be preserved. All holes with area less than this tolerance will be removed.

<centerlines_type> Required. A String indicating the type of centerlines to be created. Case sensitive.

Inside - the centerlines will be created inside the polygons - suitable for deriving centerlines from rivers and streets represented by polygons

Outside - the centerlines will be created in the gaps between polygons - suitable for deriving street centerlines from cadastral data.

{smooth_centerlines} A Boolean indicating whether the resulting centerlines will be smoothed. B-Spline smoothing algorithm is used

Scripting syntax

ET_GPCreateCenterlines (input_dataset, out_feature class, maximum_width, minimum_width,centerlines_type, smooth_centerlines)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateCenterlines(pInFC As IFeatureClass, sOutFName As String, dMaxWidth As Double,dMinWidth As Double, sCenterlinesType As String, Optional bSmooth As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Dissolve Polygons
Go to ToolBox Implementation Go to .NET Implementation

Dissolves (aggregates) polygons based on user specified attributes. The resulting polygon data set does not contain multi-part

polygons

Inputs

A polygon feature layer

Fields to be used for dissolving.

Update rules for the rest of the fields to be transferred.

Outputs

An aggregated polygon feature class.Only the polygons with common boundaries that have the same values for the

dissolve fields will be aggregated

No multi-part polygons will be created.

The attributes will be transferred according the user specified rules. For the fields with no specified update rule, date

and blob fields, the aggregated feature will carry the attributes of the first feature.

Notes:

The Dissolve Polygon Wizard works similarly to the dissolve function of GeoProcessing Wizard with a couple of

improvements:

Multiple dissolve fields can be used

It does real dissolving – the non adjacent polygons with the same values for the dissolve fields will not be

merged and no multi-part features will be created.

If multi-part features are already present in the layer to be dissolved, the Dissolve Polygons Wizard will explode them

first. The attributes will be distributed as follows:

For the fields that the user has selected SUM as an update rule, the values will be proportionally distributed

between the parts

For the rest of the fields the attributes will be copied over.

It is recommended the Explode Wizard to be used before dissolve in order to ensure proper distribution of the attribute

values of the numeric fields.

Example:

Input Layer

Dissolve field = “Dissolve”
After Dissolve:

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPDissolvePolygons<input_dataset> <out_feature class> <dissolve_field_list> {Update_Rules_List}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{dissolve_field_list} A String - a list of field names to be used for dissolving.

{Update_Rules_List} A String - a list of fields with their update rules.

Scripting syntax

ET_GPDissolvePolygons(input_dataset, out_feature class, dissolve_field_list,Update_Rules_List)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\suburbs.shp"

result = "C:\\data\\fgdb_test.gdb\\dissolved"

arcpy.gp.ET_GPDissolvePolygons(input_dataset, result, "Name;Type", "Population Sum; City First)

.NET implementation

(Go to TOP)

DissolvePolygons(pInFC As IFeatureClass, sOutFName As String, dissolveFields As List(Of String), Optional updateRules As

Dictionary(Of String, String) = Nothing) As IFeatureClass

Copyright © Ianko Tchoukanski

Eliminate

Go to ToolBox Implementation Go to .NET Implementation

Eliminates unwanted polygons (slivers) by merging them into the neighboring polygons or deleting them.

Inputs:

A polygon feature layer

Selection method

Attribute query - introduces the standard ArcGIS query builder. The user can select the polygons to be

eliminated using any query expression

Thickness ratio is expressed as a ratio of the polygon area versus the area of its minimal bounding square.

The ratio will have value of 1 for a square. The smaller the value is, the thinner the polygon is. It is a good way

of identifying thin polygons (possible slivers).

Circularity ratio - for a circle the circularity will be 1. The thinner the polygon is the smaller the circularity will

be. This is another way of identifying slivers

Elimination method

Delete - will delete all selected polygons (considered slivers)

Join (Largest area) - will join selected polygons with neighboring polygons that have the largest area

Join (Longest boundary) - will join selected polygons with neighboring polygons with the longest common

border .

Join to the neighbor with the same value in the selected field as the sliver polygon.

Identify - will record in the attribute table selected potential slivers. This allows for visual inspection before

proceeding with elimination.

Outputs:

New polygon feature class with selected polygons eliminated or identified as slivers

New field is added to the attribute table :

[ETO_Type]

The polygons not affected from elimination will have value - "Original"

The slivers that were not eliminated will have value - "Sliver"

The polygons that a sliver has been merged to - value - "Changed"

Notes :

If the source of the original data set is a feature class, to operation can be performed on the original. If the source is a

Coverage or Geodatabase, the only option is creating a new feature class

If the option "Calculate statistics" is selected, the next step will contain valuable statistics - Min, Max and Mean values

for the selected method (Thickness ratio or circularity) that will help the user when assigning the ratio to be used for

elimination

Checked "Update Area and Perimeter" option will cause recalculation of the Area and perimeter values. The rest of the

original attributes are preserved

Some of the very tiny slivers can be eliminated with the Clean Polygon Wizard using appropriate value for Fuzzy

tolerance, however eliminating larger slivers using this method is not recommended since some unwanted

approximation of the polygon shapes might occur.

Examples:

Before Eliminate Eliminated with Largest Area option Eliminated with Longest boundary option

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPEliminate <input_dataset> <out_feature class> <Attrib | Thickness | Circularity> <Delete | Largest | Longest | Join

Field> {SQL_Expression} {thickness_circularity_ratio} {Join_Field}

Parameters

Part Description

<input_dataset> A Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<Attrib | Thickness |

Circularity>

Selection Method. A String - the method to be used for selection of the polygons to be

eliminated. The values can be:

"Attrib" - an attribute query will be used

"Thickness" - the thickness ratio will be used for selection. The thickness is

expressed as a ratio of the polygon area versus the area of its minimal bounding

square. The ratio will have value of 1 for a square. The smaller the value is, the

thinner the polygon is.

"Circularity" - the thickness ratio will be used for selection. For a circle the circularity

will be 1. The thinner the polygon is the smaller the circularity will be.

<Delete | Largest | Longest

| Join Field>

Elimination Method. A String representing the elimination method to be used. The values

can be:

"Delete" - The selected polygons will be deleted

"Largest" - The polygons will be eliminated by joining them to the neighboring

polygons that have the largest area

"Longest" - The polygons will be eliminated by joining them to the neighboring

polygons with the longest common border .

"Join Field" - The polygons will be eliminated by joining them to the neighboring

polygons with the same value in the selected field as the sliver polygons.

{SQL_Expression} A String - the Where Clause that will be used if "Attrib" selection method is used. Ignored if

any of the other selection methods is used.

{Join_Field} A String - A String representing the name of the field to be used with the "Join Field" option.

 {thickness_circularity_ratio} A Double representing the value of the ratio to be used. If the selection method is

"Thickness" this is the Thickness ratio, if "Circularity" - this is the Circularity ratio. If "Attrib"

selection method is specified this value is ignored

Scripting syntax

ET_GPEliminate (input_dataset, out_feature class, selection_method, elimination_method, SQL_Expression,

thickness_circularity_ratio,Join_Field)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\eliminate_result"

arcpy.gp.ET_GPEliminate (input_dataset, result, "Thickness", "Longest","",0.35,"")

.NET implementation

(Go to TOP)

Eliminate(pInFC As IFeatureClass, sOutFName As String, sSelectionMethod As String, sEliminationMethod As String, Optional

sExpression As String = "", Optional dRatio As Double = 0, Optional sJoinField As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski

Generalize Polygons

Go to ToolBox Implementation Go to .NET Implementation

Generalizes (reduces the number of vertices required to represent a polygon) the features of a polygon layer using the

Douglas-Poiker algorithm. Preserves the polygon topology

Inputs:

A polygon feature class

Generalization Tolerance (maximum offset) - the maximum distance that the generalized polyline will differ from the

original one

Outputs:

New polygon feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes:

The function goes through a complex process in order to generalize the polygons and preserve the topological

relations between them. See this white paper for details about the process.

If you have stand alone polygons only (there are no polygons that share a common boundary) you can use the "Stand

alone only" option to make the process faster. DO NOT use this option if there are polygons that share boundary.

The Generalization tolerance should be specified in the units of the spatial reference of the input feature class

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPGeneralizePolygons <input_dataset> <out_feature_class> <generalize_tolerance> {stand_alone}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<generalize_tolerance> A Double representing Generalize tolerance (maximum offset) - the maximum distance that the

generalized polygons will differ from the original ones

 {stand_alone} A Boolean. Indicates whether the option for stand-alone polygons to be used. VERY

IMPORTANT - Set this parameter to TRUE only on polygon datasets that have only stand-alone

polygons (no common boundaries between the polygons).

Scripting syntax

ET_GPGeneralizePolygons (input_dataset, out_feature_class, generalize_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

GeneralizePolygons(pInFC As IFeatureClass, sOutFName As String, dGenTol As Double, Optional bStandAlone As Boolean

= False) As IFeatureClass

Copyright © Ianko Tchoukanski

Get Adjacent Polygons

Go to ToolBox Implementation Go to .NET Implementation

Determines for each polygon of the dataset the adjacent polygons and stores the result in the attribute table as a comma delimited string.

Inputs:

A polygon feature layer.

Link Field - the field which values will be used to save in the adjacency string

Option: Consider touching in a single point polygons neighbours - see example below

Outputs:

New polygon feature class. Two fields will be added to the attribute table

[ET_Adj] - the field that will contain the adjacency string.

[ET_Count] - the count of the adjacent polygons for each polygon

Notes:

The input polygon feature class should not have overlapping polygons. If overlaps are present - new polygons will be created from them (Clean will be performed) before collecting the adjacent polygons.

A polygon is considered adjacent to another polygon only if the two polygons have a common boundary. Two polygons that share only a common point are not considered adjacent

Example:

State_Name
Do not consider Touching (in a single point) polygons neighbours. Consider Touching (in a single point) polygons neighbours.

ET_Adj ET_Count ET_Adj

Arizona California,Sonora,Nevada,NewMexico,BajaCalifornia,Utah 6 California,Sonora,NewMexico,BajaCalifornia,Nevada,Utah,Colorado

Colorado NewMexico,Utah,Wyoming,Kansas,Nebraska,Oklahoma 6 Arizona,NewMexico,Utah,Oklahoma,Wyoming,Nebraska,Kansas

New Mexico Chihuahua,Sonora,Arizona,Colorado,Oklahoma,Texas 6 Chihuahua,Sonora,Texas,Arizona,Utah,Colorado,Oklahoma

Utah Nevada,Arizona,Colorado,Wyoming,Idaho 5 Nevada,Arizona,Idaho,NewMexico,Colorado,Wyoming

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonAdjancency <input_dataset> <out_feature_class> <ID_field>{include_touching}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<ID_field> A String representing the name of a field in the in the attribute table of the input dataset field name. The field has the values used values will be used to save in the adjacency string.

{include_touching} A Boolean indicating whether the polygons touching in a single point to be considered adjacent (see example above).

Scripting syntax

ET_GPPolygonAdjancency (input_dataset, out_feature class,ID_field,include_touching)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonAdjacency(pInFC As IFeatureClass, sOutFName As String, sIDField As String, Optional bTouching As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Partition Polygons with Polylines

Go to ToolBox Implementation Go to .NET Implementation

Partitions (splits) a polygon dataset with the polylines of a polyline dataset.

Inputs:

A polygon feature class

A polyline feature class to be used for splitting

Outputs:

New polygon feature class . The attributes of the input data set are preserved.

Notes:

The function goes through a complex process. See this white paper for details about the process.

Both datasets should have the same spatial reference.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPartitionPolygons <input_dataset> <split_polylines> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<split_polylines> A Polyline feature class or feature class.

NOTE: The spatial references of <input_dataset> and the <split_polylines> must have the same

Geographic Coordinate System

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPPartitionPolygons (first_dataset, second_dataset, out_feature_ class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PartitionPolygons(pInFC As IFeatureClass, pSplitFc As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygon Global Snap

Go to ToolBox Implementation Go to .NET Implementation

Snaps the features of a polygon layer to another layer (Point, Polyline or Polygon)

Inputs:

A polygon layer to be snapped

A snap layer - point, polyline or polygon

Snap tolerance

Snap options1 (Snap What)

Snap options2 (Snap To What)

Outputs:

A polygon feature class - the vertices from the source layer will be moved to snap to the features of the Snap Layer (if within the

snap tolerances

Options:

Snap Options 1 (Snap What) - this options lets the user set which elements of the source polylines to be used for snapping

Vertices: All the vertices of the source polylines will be used.

Insert Vertices: This option will get the vertices from the features of the snap layer and will insert new vertices into the

source polylines. The new vertices together with the original ones will be used for snapping. This option is slower than the

other ones, but gives the best snapping results especially if the polylines to be snapped have much less vertices than the

ones from the Snap layer.

Snap Options 2 (Snap To What)

Vertices: The polygons will be snapped to the nearest vertex of the nearest feature from the Snap layer

Nearest edge: The polygons will be snapped to the nearest point of the nearest feature from the Snap layer

Vertices & Edges: If there is a vertex closer than the snap tolerance to the polygons (their elements defined in Options 1)

to be snapped, the polygon will snap to it, otherwise it will snap to the nearest edge.

Notes:

If the "Insert new Vertices" option is used the polygons will be cleaned from overlaps.

The snap distance should be in the units of the input dataset.

The Source and the Snap datasets can have different spatial references as long as they have the same Geographic Coordinate

systems.

Example:

Before Snap
After Snap

Option: Vertices

After Snap

Option: Nearest Edge

After Snap

Option: Vertices & Edges

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSnapPolygons <input_dataset> <Reference_dataset> <out_feature class> <snap_tolerance> <snap_what> {snap_to_vertices}

{snap_to_nearest}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<Reference_dataset> A Point, Polyline or Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<snap_tolerance> A Double representing the Search tolerance (in the units of the input_dataset) to be used

<snap_what> A String indicating what parts of the input polylines will be snapped. Possible values:

Vertex: All the vertices of the source polylines will be used.

Insert: This option will get the vertices from the features of the Reference_dataset and will insert new

vertices into the source polylines. The new vertices together with the original ones will be used for

snapping. This option is slower than the other ones, but gives the best snapping results especially if

the polylines to be snapped have much less vertices than the ones from the Reference_dataset.

{snap_to_vertices} A Boolean indicating whether snapping to the closest vertex of the nearest feature from the

Reference_dataset to be used

{snap_to_nearest} A Boolean indicating whether snapping to the nearest point of the nearest feature from the

Reference_dataset to be used

Scripting syntax

ET_GPSnapPolygons (input_dataset, Reference_dataset, out_feature_ class, snap_tolerance, snap_what,snap_to_vertices,

snap_to_nearest)

.NET implementation

(Go to TOP)

SnapPolygons(pInFC As IFeatureClass, pRefFC As IFeatureClass, sOutFName As String, dSnapTol As Double, sSnapWhat As String,

Optional bVertex As Boolean = False, Optional bNearest As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Smooth Polygons

Go to ToolBox Implementation Go to .NET Implementation

Smooth the features of a polygon layer using three different smoothing algorithms"

Inputs:

A polygon feature class

Smooth method (see examples here)

Bezier curve

The curve in general does not pass through any of the control points (vertices of original polyline)

except the first and last.

The curve is always contained within the convex hull of the control points

Approximate the original shape rather freely

Fast - good for polylines with many vertices (control points) that will constrain the curve close to the

original shape

B - Spline - best for smoothing polygons

The curve does not pass through any of the control points (vertices of original polyline) except the

first and last

Follows better than the Bezier curve the original shape

Depending on the "Freedom" parameter the smoothing occurs only in the areas close to a vertex

B-Splines lie in the convex hull of the original polyline

Slower than the Bezier curve, but the results in many cases are much better

T - Spline (Tension Spline) - not recommended when smoothing polygons

The curve passes trough all the vertices of the original polyline

The degree of fit can be controlled with the "Tension" parameter

Suitable for smoothing curves with comparatively equally spaced vertices

Fast with good approximation of the original polyline

Parameters depending on the method

The "Smoothness" parameter (Used in all methods) defines the number of points in the output curve. The

allowed values (2 to 20) in fact are point multiplier. The number of vertices of the original polyline multiplied

by this value will give the number of vertices of the smoothed polyline. The larger the value of the

Smoothness parameter, the slower the process will be. In most of the cases a value of 5 (default) will create

smooth and representative polyline

The "Freedom" parameter (B-Spline only) defines how close to the original polyline the curve will be. The

allowed values are from 3 to 10. Smaller values give better approximation. With large values the curve will

become very similar to Bezier curve

The "Tension" parameter (T-Spline only) defines how close to the original polyline the curve will be.

Increasing the tension is similar to pulling on the ends of a string constrained to pass through the polyline

vertices. allowed values are from 1 to 100.

Optional - Densification tolerance. In some cases the smooth parameters cannot restrict the smoothing enough. The

user can restrict the effect of the smoothing by introducing new vertices in the shapes. See Densify function for details

Optional - Generalization tolerance. The smoothing introduces in the shapes many new vertices. The user can

decrease the number of vertices by using this option. See Generalize function for details.

Outputs:

New polygon feature class

The output feature class will contain all the features of the original data set

The attributes of the input data set are preserved.

Notes:

The function goes through a complex process in order to smooth the polygons and preserve the topological relations

between them. See this white paper for details about the process.

Using T-Spline method can produce sometimes incorrect results (missing polygons). Inspect your data after

smoothing.

The Generalization and Densification tolerances should be specified in the units of the spatial reference of the input

feature class

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSmoothPolygonsBS <input_dataset> <out_feature_class> <smoothness> <freedom> {densify_tolerance}

{generalize_tolerance}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<smoothness> An Integer that defines the number of points in the output curve. The allowed values (2 to 20) in

fact are point multiplier. The number of vertices of the original polyline multiplied by this value will

give the number of vertices of the smoothed polyline. The larger the value of the <smoothness>

parameter, the slower the process will be.

<freedom> An Integer that defines how close to the original polyline the curve will be. The allowed values are

from 3 to 10. Smaller values give better approximation. With large values the curve will become

very similar to Bezier curve

{densify_tolerance} A Double representing the Densification tolerance. In some cases the smooth

parameters cannot restrict the smoothing enough. The user can

restrict the effect of the smoothing by introducing new vertices in

the shapes. See Densify function for details

{generalize_tolerance}
A Double representing the Generalization tolerance. The smoothing

introduces in the shapes many new vertices. The user can

decrease the number of vertices by using this option. See

Generalize function for details.

Scripting syntax

ET_GPSmoothPolygonsBS (input_dataset, out_feature_class, smoothness, freedom, densify_tolerance, generalize_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SmoothPolygonsBS(pInFC As IFeatureClass, sOutFName As String, iSmoothness As Short, iFreedom As Short, Optional

dDensTol As Double = 0, Optional dGenTol As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygon Characteristics

Go to ToolBox Implementation Go to .NET Implementation

Calculates some characteristics of the polygons from a polygon dataset

Inputs:

A Polygon feature class

Outputs:

The results can be added to the input feature class or a new polygon feature class. All attributes of the original features are preserved

New fields added to the attribute table

ET_Length - the length of the longest axis in the units of the Spatial Reference of the input feature class.

ET Width - the length of shortest side of the bounding rectangle aligned with the longest axis in the units of the Spatial Reference of the input feature class.

ET Circ - Circularity ratio - for a circle the circularity will be 1. The thinner the polygon is the smaller the circularity will be.

ET Thick - Thickness ratio expressed as a ratio of the polygon area versus the area of its minimum bounding square. The ratio will have value of 1 for a square. The smaller the value is, the thinner the polygon is.

ET_Parts - the number of parts that the polygon has

ET_Holes - the number of holes in the polygon

ET_HasArcs - if the polygon has true arc segments - 1 otherwise - 0

ET_Vert - the number of vertices of the polygon

ET_Depth - the distance from the deepest point (the center of the maximum inscribed circle) to the polygon boundary. See Polygon To Point and Polygon To Maximum Inscribed Circle functions

ET_Fract - the fractal dimension (indication of the complexity) of the polygon boundary. The value is between 1 and 2. The more complex the polygon boundary is the larger the fractal dimension will be.

Notes:

Fractal Dimension of the polygon boundaries is calculated using the Box Counting method (1)

Calculating the Fractal Dimension and Polygon Depth is time consuming. If you don't need these characteristics, uncheck the options for faster processing.

Illustrations:

References:

1. Bourke, P., 1993. Fractal Dimension Calculator User Manual, Online. Available: http://paulbourke.net/fractals/fracdim/

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonCharacteristics <input_dataset> {polygon_depth} {fractal_dimension} {precision}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer.

{fractal_dimension} A Boolean indicating whether to calculate polygon depth or not.

{polygon_depth} A Boolean indicating whether to calculate fractal dimension or not.

{precision} An Integer between 0 and 8 representing the number of places after the decimal point to be used.

Scripting syntax

ET_GPPolygonCharacteristics (input_dataset, polygon_depth, fractal_dimension, precision)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonCharacteristics(pInFC As IFeatureClass, Optional bCalculateDepth As Boolean = False, Optional bCalculateFract As Boolean = False, Optional iPrecision As Short = 2) As Boolean

Copyright © Ianko Tchoukanski

Polygon To Polyline Advanced

Go to ToolBox Implementation Go to .NET Implementation

Converts the polygon boundaries to polylines.

Creates a topologically correct (nodes at intersections, no overlaps) Polyline feature class

For each polyline the left and right polygon attributes are added.

Optionally the labels of the polygons are exported as points. The point attribute table contains all original attributes.

Inputs:

A polygon feature layer

Link Field - the values of this field will be saved as Left and Right polygons for each polyline

Fuzzy tolerance - will be used to clean the polygon boundaries

Outputs:

New topologically correct Polyline feature class. Fields added to the polyline attribute table

[ET_Left] - stores the Left polygon link values

[ET_Right] - stores the Right polygon link values

Optional Point feature class representing the labels of the input polygons. The attributes of the input polygons are preserved in the Point Attribute Table

Notes :

The default Fuzzy tolerance is calculated from the extents of the input layer using the formulae (W + H) / 2000000 where W and H are the with and height of the extent envelope.

Larger values of the Fuzzy tolerance may be used to clean some bigger Gaps and Slivers, but it might lead to unwanted approximation of the input shapes.

A Fuzzy tolerance of 0 will be replaced by the default value

If a polyline does not have Left polygon, the value of the ET_Left field will be set to -999999999. In topologically correct polygon dataset this should indicate the outer boundary (neighboring with the so-called Universal Polygon.

Values of -999999999 in the interior of the polygon dataset will indicate gaps or overlaps in the data.

If the input feature class has multi-part features and the Object ID field is used as a link field, the polylines will have for Left and Right polygons the IDs of the original polygons. The label points however will carry in the ET_ID

field the IDs of the exploded polygons.

Example:

Original polygons

Derived polylines.

Nodes in intersections

No duplicates

The polylines on the boundary of the area will have ET_Left = -999999999

Polylines labeled with their Left and Right polygons. Polygons labeled with the Link field used in the function.

Multi-part polygons. Object ID used in the function as a link field.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonToPolylineAdvanced <input_dataset> <out_feature_class><fuzzy_tolerance> <link_field> {label_feature_class}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class.

<fuzzy_tolerance> A Double - the gaps smaller than this tolerance will be closed. The units of the parameter are in the spatial reference of the input feature class

<link_field> A String - the name of the field to be used as a link. The field must exists in the input feature class. The type of the field can be Short Integer , Long Integer, Double, Single, String or Object ID. The values of this field will be

saved as Left and Right polygons for each polyline.

 {label_feature_class} A String - the full name of the label feature class.

Scripting syntax

ET_GPCleanContourGaps (input_dataset, out_feature_ class, fuzzy_tolerance, link_field,label_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonToPolylineAdvanced(pInFC As IFeatureClass, sOutFName As String, dFuzzy As Double, sLinkField As String, Optional sLabelsFName As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski

Fill Polygon Holes

Go to ToolBox Implementation Go to .NET Implementation

Ensures topological correctness of a polygon feature data set.

Inputs:

A polygon feature layer

Maximum area of the holes to be removed

Outputs:

New polygon dataset. The holes with area smaller than the user tolerance will be removed

Notes :

If there are island polygons present, the function will create overlaps. Use the Clean Polygons function to restore the

topology.

Example:

Input Dataset After Fill Polygon Holes

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFillPolygonHoles<input_dataset> <out_feature_class>{max_area}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{max_area} A Double. Holes with larger area than this tolerance will not be removed.

Scripting syntax

ET_GPFillPolygonHoles(input_dataset, out_feature_class,max_area)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FillPolygonHoles(pInFC As IFeatureClass, sOutFName As String, Optional dAreaTol As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygon To Polyline

Go to ToolBox Implementation Go to .NET Implementation

Converts a polygon data set to a polyline feature class

Inputs:

A polygon feature layer

Outputs:

New polyline feature class

Notes :

Each ring of a polygon will be represented by a single polyline. The common boundaries between the polygons will be

represented by duplicate polylines. The Clean Polylines Wizard can be used to create intersections and remove

duplicate lines.

The attributes of the original polygons are transferred to the resulting polylines.

If the input is of PolygonZ(M) type, the output will be of PolylineZ(M) type. The Z(M) values will be preserved.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonToPolyline <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPPolygonToPolyline (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonToPolyline(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygon To Point

Go to ToolBox Implementation Go to .NET Implementation

Converts a polygon data set to a point feature class

Inputs:

A polygon feature layer

Conversion option

Vertices - the vertices of all polygons will be converted to points.

Labels - the Label point is always located inside the polygon. The algorithm makes sure that the point is not close to the boundary of the polygon. Points created using this algorithm are suitable for spatial transfer

of attributes (See Smooth Polygons and Generalize Polygons functions).

Centers - the Center points represent the centroid of a polygon. Therefore sometimes they might be located outside of the polygon

Centers Inside - points representing the centroids of the polygons. If the centroid occurs outside of the polygon, the point is moved to be in the polygon.

Deepest Point - a single point per polygon is created - the inside point farthest from the polygon boundary. The distance from the polygon boundary is stored in the ET_Depth field of the point attribute table

More options

Remove Duplicate Points - the duplicate points created from the vertices of two adjacent polygons will be represented by one point. Note that if this option is used the attempt to convert back these points to

polygons will produce incorrect result

Calculate point Position along boundaries

If used the [ET_Order] field will be populated with the relative location of the vertex (0 to 1) from the start of the polygon boundary.

If not used, the [ET_Order] field will be populated with the order of the vertex in the polygon ring (from 0 to number of vertices)

Preserve Z(M) available only if the input feature class is of PolygonZ(M) type. If selected, the result will be of PointZ(M) type, otherwise the result will be of plain points (no Z or M values)

Outputs:

New point feature class.

All the original attributes of the polygons are transferred to the point attribute table

new fields are added to the point attribute table

[ET_Order] - the position of the point along the polygon's boundary. The value can be from 0 to 1 (if the Calculate point Position option is used) or from 0 to number of vertices (if not). The value of this

attribute can be used if the polygons have to be recreated from these points. - only if "Vertices" conversion option is used

[ET_IDP] - the FID of original polygons. The values can be used to link the points back to the polygons.

[ET_IDR] - this is a unique number identifying each ring of the polygons. If a polygon with FID = 356 has 3 rings, the corresponding points will have values in this fields 356_0, 356_1 and 356_2. This field

can be used to recreate the polygons from the points without loosing the rings. - only if "Vertices" conversion option is used

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

[ET_Z] - if the input feature class is of PolygonZ(M) type.

[ET_M] - if the input feature class is of PolygonZ(M) type.

[ET_DEPTH] - the distance from the deepest point to the polygon boundary. - only if "Deepest Point" conversion option is used

Notes :

See above for the use of the "Remove duplicate points" option

The functionality of the PolygonZ(M) To Point function available in the pre 11.0 versions is entirely included in this function.

Examples:

Input Dataset Result Vertices option

Result Center option Result Center in option

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonToPoints <input_dataset> <out_feature class> <Vertex | Center | Label> {remove_duplicates} {calc_point_pos} {keep_ZM}

Parameters

Part Description

<input_dataset> A Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<Vertex | Center |

LabelCenterIn|DeepestPoint>

Convert Option. A String - the export option to be used. The available options are (Case sensitive):

"Vertex" - - the vertices of all polygons will be converted to points. If {remove_duplicates} is True the duplicate points created from the vertices of two adjacent polygons will be

represented by one point.

"Label" - the Label point is always located inside the polygon. The algorithm makes sure that the point is not close to the boundary of the polygon. Points created using this algorithm are

suitable for spatial transfer of attributes (See Smooth Polygons and Generalize Polygons functions).

"Center" - the Center points represent the centroid of a polygon. Therefore sometimes they might be located outside of the polygon

"CenterIn" - points representing the centroids of the polygons. If the centroid occurs outside of the polygon, the point is moved to be in the polygon.

"DeepestPoint - a single point per polygon - the inside point farthest from the polygon boundary.

{remove_duplicates} A Boolean used only with Convert Option = "Vertex". If True the duplicate points representing coincident vertices of two or more adjacent polygons will be removed.

{calc_point_pos} A Boolean indicating whether the position of the points along the polygon boundary to be calculated (only if the "Vertex option is used)

{keep_ZM} A Boolean indicating whether the the output will be of Z(M) type (only if the input dataset is of Z(M) type)

Scripting syntax

ET_GPPolygonToPoints (input_dataset, out_feature class, convert_option, remove_duplicates,calc_point_pos, keep_ZM)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonToPoints(pInFC As IFeatureClass, sOutFName As String, sOption As String, Optional bDuplicates As Boolean = False, Optional bPos As Boolean = False, Optional bKeepZM As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Polyline To Point

Go to ToolBox Implementation Go to .NET Implementation

Converts a polyline data set to a point feature class

Inputs:

A polyline feature layer

Conversion option

Vertices - the vertices of all polylines will be converted to points. If the "Remove duplicate points" option is

selected the duplicate points created from the nodes of two polylines sharing a common node will be

represented by one point. Note that if this option is used the attempt to convert back these points to polylines

will produce incorrect result.

Nodes - only the nodes of each polyline will be exported.

Middle points - only the middle point of each polyline will be exported.

More options

Remove Duplicate Points - the duplicate points created from the vertices of two adjacent polygons will be

represented by one point. Note that if this option is used the attempt to convert back these points to polygons

will produce incorrect result

Calculate point Position along boundaries

If used the [ET_Order] field will be populated with the relative location of the vertex (0 to 1) from the

start of the polylines.

If not used, the [ET_Order] field will be populated with the order of the vertex in the polyline (from 0 to

number of vertices)

Preserve Z(M) available only if the input feature class is of PolygonZ(M) type. If selected, the result will be of

PointZ(M) type, otherwise the result will be of plain points (no Z or M values)

Outputs:

New point feature class

All the original attributes of the polylines are transferred to the point attribute table

New fields are added to the point attribute table

[ET_ID] - the FID of original polylines. The values can be used to link the points back to the polylines.

[ET_IDP] - this is a unique number identifying each part of the polylines. If a polyline with FID = 356

has 3 parts, the corresponding points will have values in this fields 356_0, 356_1 and 356_2.

[ET_X] - the X coordinates of the resulting points

[ET_Y] - the Y coordinates of the resulting points

If the conversion option is "Vertices" or "Nodes" an Order field is added

[ET_Order] - the position of the point along the polyline . The value can be from 0 to 1 (if the

Calculate point Position option is used) or from 0 to number of vertices (if not). The value of this

attribute can be used if the polyline have to be recreated from these points.

If the "Assign angle attribute" option is used an angle field is added

[ET_Angle] - the angle of the polyline in this point.

Notes :

See above for the use of the "Remove duplicate points" option

If the "Assign angle attribute" option is used, the points symbols can be rotated and in such a way can represent the

direction of the polylines. See the example below

The functionality of the PolylineZ(M) To Point function available in the pre 11.0 versions is entirely included in this

function.

Example:

Angle at the start of segments Angle at the end of segments

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolylineToPoints <input_dataset> <out_feature class> <Vertex | Middle | Node> {remove_duplicates} {calc_point_pos}

{point_angle} {angle_at_start} {keep_ZM}

Parameters

Part Description

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<Vertex | Middle |

Node>

Convert Option. A String - the export option to be used. The available options are (Case sensitive):

"Vertex" - - the vertices of all polylines will be converted to points. If {remove_duplicates} is

True the duplicate points created from the nodes of two polylines sharing a common node

will be represented by one point.

"Middle" - only the middle point of each polyline will be exported.

"Node" - only the nodes of each polyline will be exported. If {remove_duplicates} is True the

duplicate points created from the nodes of two polylines sharing a common node will be

represented by one point.

{remove_duplicates} A Boolean used only with Convert Option = "Vertex" and Convert Option = "Node". If True the

duplicate points representing coincident nodes will be removed.

{calc_point_pos} A Boolean indicating whether the position of the points along the polylines to be calculated (only if

the "Vertex option is used)

{point_angle} A Boolean - indicates whether an angle attribute to be added to the point attribute table.

{angle_at_start} A Boolean - indicates from which polyline segment to be calculated the angle. True - from the start

segment, False3 from the segment end. See the main page of the function for an example.

{keep_ZM} A Boolean indicating whether the the output will be of Z(M) type (only if the input dataset is of Z(M)

type)

Scripting syntax

ET_GPPolylineToPoints (input_dataset, out_feature class, convert_option, remove_duplicates, calc_point_pos, point_angle,

angle_at_start, keep_ZM)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolylineToPoints(pInFC As IFeatureClass, sOutFName As String, sOption As String, Optional bAngle As Boolean = False,

Optional sAng As String = "From", Optional bDuplicates As Boolean = False, Optional bPos As Boolean = False, Optional

bKeepZM As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Closed Polylines To Polygons

Go to ToolBox Implementation Go to .NET Implementation

Converts closed polylines (and polyline chains) to polygons

Inputs:

A polyline feature layer

Outputs:

New polygon feature class

Notes :

All closed polylines will be converted to polygons.

The attributes of the polylines will be transferred to the corresponding polygon features.

If the "Use closed polyline chains" option is used, the polylines that form closed chains will be used to create polygons.

The attributes of the first polyline of the chain will be transferred to the polygon feature

For advanced polygon creation use the Build Polygon function

Example:

Source Polyline Layer
Result Polygon Layer

(no polyline chains used)

Result Polygon Layer

(closed polyline chains used)

Result Polygon Layer

(Build Polygon Wizard)

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolylineToPolygon <input_dataset> <out_feature_class> {force_closure} {tolerance}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

 {force_closure} A Boolean indicating whether the non closed polylines must be closed and converted to polygons.

{tolerance} A Double setting the tolerance (in the units of the input dataset) to be used if the force_closure =

True. If force_closure = False this parameter is ignored. Open polylines which end points are closer

to each other than this tolerance will be closed and converted to polygons

Scripting syntax

ET_GPPolylineToPolygon (input_dataset , out_feature_class, force_closure, tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolylinesToPolygons(pInFC As IFeatureClass, sOutFName As String, Optional bForce As Boolean = False, Optional dTol As

Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Polyline To Multipoint

Go to ToolBox Implementation Go to .NET Implementation

Converts a polyline data set to a Multipoint feature class

Inputs:

A polyline feature layer

Outputs:

New Multipoint feature class

Notes :

The attributes of the original polylines are transferred to the resulting multipoints.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolylineToMultipoint <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPPolylineToMultipoint (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolylineToMultipoint(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Point To Polyline

Go to ToolBox Implementation Go to .NET Implementation

Converts a point data set to a polyline feature class. Attaches to the polyline attribute table the values of the attributes for the

first and last point that form a single polyline. If your point data does not have Polyline ID and Order attributes, you can try the

Connect Unstructured Points function.

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of each polyline

OPTIONAL: an Order field that defines in what sequence the points describe the polyline. If no Order field is

used the order is defined by the record number of the points

OPTIONAL: a Link field. The values for the first and last point that will form a single polyline will be added to

the polyline attribute table.

OPTIONAL: Z Value field. If specified, a PolylineZ feature class will be created. The values in this field will be

set as Z values for the vertices. If the input points have Z values, the user can specify the Z values of the

input points to ve used by selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified, a PolylineM feature class will be created. The values in this field will

be set as M values for the vertices. If the input points have M values, the user can specify the M values of the

input points to ve used by selecting "Features" for M Value field.

Outputs:

New polyline feature class

Fields to be added to the polyline attribute table

[ET_ID] - the field used as Polyline ID

[ET_FromAtt] - the values of the start point of the polyline in the Link field (if link field is used)

[ET_ToAtt] - the values of the end point of the polyline in the Link field (if link field is used)

Notes:

There should be at least two points with the same value in the ID field in order polylines to be created.

The function entirely covers the functionality of the Point To PolylineZ(M) function available in pre 11.0 versions.

Example:

Source points Source points attribute table

Resulting polylines

ID Field = [PolylineID] ; No Order Used

Resulting polylines

ID Field = [PolylineID] ; Order field = [PointOrder]

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointToPolyline <input_dataset> <out_feature class> <polylineID_field> {Z_value_field} {M_value_field} {order_field}

{link_field}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<polylineID_field> A String - the name (Case sensitive) of the field which values will indicate the points used to form a

single polyline.

{Z_value_field} A String - the name of the field which values will be used for Z values of the vertices. "Shape" can be

used if the input points have Z.

{M_value_field} A String - the name of the field which values will be used for M values of the vertices. "Shape" can be

used if the input points have M.

{order_field} A String - the name (Case sensitive) of a Numeric (integer or double) field which values will indicate

the order in which the points describe the polylines. If no Order field is used the order is defined by the

record number of the points

{link_field} A String - the name of a field to be used as a link between the input points and the output. The values

for the first and last point that will form a single polyline will be added to the polyline attribute table.

Scripting syntax

ET_GPPointToPolyline (input_dataset, out_feature class, polylineID_field, Z_value_field, M_value_field, order_field, link_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToPolylines(pInFC As IFeatureClass, sOutFName As String, sIdField As String, Optional sOrderField As String = "",

Optional sZFieldName As String = "", Optional sMFieldName As String = "", Optional sLinkField As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Point To Polygon

Go to ToolBox Implementation Go to .NET Implementation

Converts a point data set to a polygon feature class. Attaches to the polygon attribute table the values of the attributes for the

first and last point that form a single polygon

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of each polygon

OPTIONAL: an Order field that defines in what sequence the points describe the polygon. If no Order field is

used the order is defined by the record number of the points

OPTIONAL: a Link field. The values for the first and last point that will form a single polygon will be added to

the polygon attribute table.

OPTIONAL: Z Value field. If specified a PolygonZ feature class will be created. The values in this field will be

set as Z values for the vertices. If the input points have Z values, the user can specify the Z values of the

input points to ve used by selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified a PolygonM feature class will be created. The values in this field will be

set as M values for the vertices. If the input points have M values, the user can specify the M values of the

input points to ve used by selecting "Features" for M Value field.

Outputs:

New polygon feature class

Fields to be added to the polyline attribute table

[ET_ID] - the field used as Polygon ID

[ET_FromAtt] - the values of the start point of the polygon in the Link field (if link field is used)

[ET_ToAtt] - the values of the end point of the polygon in the Link field (if link field is used)

Notes:

There should be at least three points with the same value in the ID field in order polygons to be created.

The function entirely covers the functionality of the Point To PolygonZ(M) function available in pre 11.0 versions.

Example: See the example for Point To Polyline function

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointsToPolygons <input_dataset> <out_feature class> <polygonID_field> {Z_value_field} {M_value_field}

{order_field} {link_field}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<polygonID_field> A String - the name (Case sensitive) of the field which values will indicate the points used to form a

single polygon.

{Z_value_field} A String - the name of the field which values will be used for Z values of the vertices. "Shape" can be

used if the input points have Z.

{M_value_field} A String - the name of the field which values will be used for M values of the vertices. "Shape" can be

used if the input points have M.

{order_field} A String - the name (Case sensitive) of a Numeric (integer or double) field which values will indicate

the order in which the points describe the polygons. If no Order field is used the order is defined by

the record number of the points

{link_field} A String - the name of a field to be used as a link between the input points and the output. The values

for the first and last point that will form a single polyline will be added to the polyline attribute table.

Scripting syntax

ET_GPPointsToPolygons (input_dataset, out_feature class, polygonID_field, Z_value_field, M_value_field, order_field,

link_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToPolygons(pInFC As IFeatureClass, sOutFName As String, sIdField As String, Optional sOrderField As String = "",

Optional sZFieldName As String = "", Optional sMFieldName As String = "", Optional sLinkField As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Point To Multipoint

Go to ToolBox Implementation Go to .NET Implementation

Converts a point data set to a Multipoint feature class.

Inputs:

A point feature layer

REQUIRED: an ID field which value defines the points to be used for creation of each multipoint.

OPTIONAL: an Order field that defines in what sequence the points describe the multi-point. If no Order field

is used the order is defined by the record number of the points

OPTIONAL: a Link field. The values for the first and last point that will form a single multi-point will be added

to the polyline attribute table.

OPTIONAL: Z Value field. If specified, a MultipointZ feature class will be created. The values in this field will

be set as Z values for the vertices. If the input points have Z values, the user can specify the Z values of the

input points to ve used by selecting "Features" for Z Value field.

OPTIONAL: M Value field. If specified, a MultipointM feature class will be created. The values in this field will

be set as M values for the vertices. If the input points have M values, the user can specify the M values of the

input points to ve used by selecting "Features" for M Value field.

Outputs:

New multipoint feature class

Fields to be added to the attribute table

[ET_ID] - the field used as Multipoint ID

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointToMultipoint <input_dataset> <out_feature class> <multipointID_field>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<multipointID_field> A String - the name of the field which values will indicate the points used to form a single multipoint

feature.

{Z_value_field}
A String - the name of the field which values will be used for Z values of the vertices. "Shape" can

be used if the input points have Z.

{M_value_field}
A String - the name of the field which values will be used for M values of the vertices. "Shape" can

be used if the input points have M.

{order_field}

A String - the name of a Numeric (integer or double) field which values will indicate the order in

which the points describe the polylines. If no Order field is used the order is defined by the record

number of the points

{link_field}

A String - the name of a field to be used as a link between the input points and the output. The

values for the first and last point that will form a single polyline will be added to the polyline attribute

table.

Scripting syntax

ET_GPPointToMultipoint (input_dataset, out_feature class, multipointID_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToMultipoints(pInFC As IFeatureClass, sOutFName As String, sIdField As String, Optional sOrderField As String = "",

Optional sZFieldName As String = "", Optional sMFieldName As String = "", Optional sLinkField As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Point To Point Z(M)

Go to ToolBox Implementation Go to .NET Implementation

Converts a point data set to a point Z (M) feature class

Inputs:

A point feature layer

REQUIRED: a numeric field with Z (M) values that will be applied to the newly created Points Z (M)

Type of the output point feature class - Z or M

Outputs:

New point Z(M) feature class. All the original attributes are transfered.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointToPointZM <input_dataset> <out_feature class> <ZM_value_field> <Z | M>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<ZM_value_field> A String - the name (Case sensitive) of a Numeric (integer or double) field which values will be used

for assigning Z(M) values to the output points

<Z | M> Convert Option. A String - indicates the type of the output points. The available options are (Case

sensitive):

"Z" - the output will be PointZ

"M" - the output will be PointM

Scripting syntax

ET_GPPointToPointZM (input_dataset, out_feature class, ZM_value_field, convert_option)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointToPointZM(pInFC As IFeatureClass, sOutFName As String, Optional sZFieldName As String = "", Optional sMFieldName

As String = "") As IFeatureClass

Copyright © Ianko Tchoukanski

Multipoint To Point

Go to ToolBox Implementation Go to .NET Implementation

Converts a multipoint data set to a point feature class

Inputs:

A multipoint feature layer

Outputs:

New point feature class

New fields are added to the point attribute table

[ET_ID] - the FID of original multipoints. The values can be used to link the points back to the

multipoints.

[ET_Z] - is added and populated with Z values if the multipoint is Z aware

[ET_M] - is added and populated with M values if the multipoint is M aware

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPMultipointsToPoints <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Multipoint feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPMultipointsToPoints (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

MultipointsToPoints(pInFC As IFeatureClass, sOutFName As String, Optional bKeepZM As Boolean = False) As

IFeatureClass

Copyright © Ianko Tchoukanski

Multipoint To Polyline

Go to ToolBox Implementation Go to .NET Implementation

Converts a Multipoint data set to a Polyline feature class

Inputs:

A Multipoint feature layer

Outputs:

New Polyline feature class

Notes :

The attributes of the original multipoints are transferred to the resulting polylines.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPMultipointToPolyline <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Multipoint feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPMultipointToPolyline (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

MultipointToPolyline(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Shape Z (M) To Shape

Go to ToolBox Implementation Go to .NET Implementation

Converts a Z (M) data set to a plain (no Z or M) feature class

Inputs:

A Z aware or M aware feature layer

Point

Polyline

Polygon

Outputs:

New feature class

The original attributes are preserved

Notes:

Multipoint is not supported. To convert Multipoint Z (M) to point use Multipoint To Point Wizard

The Z or/and M values are dropped from the features. To preserve Z (M) values use:

Point Z (M) to Point Wizard

Polyline Z (M) to Point Wizard

Polygon Z (M) to Point Wizard

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPDropZM<input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPDropZM(input_dataset out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

DropZM(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Shape To ShapeZ

Go to ToolBox Implementation Go to .NET Implementation

Converts the features of a data set to 3D features with constant Z value

Inputs:

A point, polyline or polygon feature layer

REQUIRED: a numeric field with Z values that will be applied to the newly created 3D geometries.

Outputs:

New PointZ, PolylineZ or PolygonZ (depending on the input) feature class. All the original attributes are transferred.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPShapeToShapeZ<input_dataset> <out_feature class> <Z_value_field> {Add_M}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<Z_value_field> A String - the name (Case sensitive) of a Numeric (integer or double) field which values will be used for

assigning Z values to the output points

{Add_M} A Boolean - if TRUE - M values will be addaed.

Scripting syntax

ET_GPShapeToShapeZ(input_dataset, out_feature_class, Z_value_field, Add_M)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ShapeToShapeZ(pInFC As IFeatureClass, sOutFName As String, sZFieldName As String, Optional bM As Boolean = False,)

As IFeatureClass

Copyright © Ianko Tchoukanski

Build TIN

Go to ToolBox Implementation Go to .NET Implementation

Builds a Triangulated Irregular Network from a feature layer

Inputs:

A feature layer (Point, Polyline, Polygon)

An elevation field - numeric field that will be used

Outputs:

New polygon Z feature class. All the polygons are triangles that comply with the Delaunay criteria. See TIN notes for

more information about Triangulated Irregular Network

Notes :

The process goes through several steps

Collecting the elevation points from the source layer. If the source is a polygon or polyline layer, all the

vertices are used.

Removing duplicate points

Creating the TIN structure

Storing the polygons Z

To achieve best results when creating TIN from a polyline layer use Generalize Polylines function or Densify Polylines

function in order to remove unnecessary points or add points to the long straight segments

The function should work with no problems on datasets with up to 2 million points.

For advanced TIN and Raster surfaces creation, check ET Surface at http://www.ian-ko.com

Example:

Source Layer (polyline) Result TIN

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBuildTIN <input_dataset> <out_feature class> <elevation_field>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

http://www.ian-ko.com

<elevation_field> A String representing the field name (must be a numeric field) that will be used as a source for the

elevation values

Scripting syntax

ET_GPBuildTIN (input_dataset, out_feature class, elevation_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BuildPolygonZTIN(pInFC As IFeatureClass, sOutFName As String, sElevationField As String, Optional dLightAzimuth As

Double = 315, Optional dLightAltitude As Double = 45) As IFeatureClass

Copyright © Ianko Tchoukanski

Analyze TIN

Go to ToolBox Implementation Go to .NET Implementation

Calculates several characteristics for each triangle of a TIN (polygonZ)

Minimum elevation

Maximum elevation

Mean elevation

Slope - identifies the slope, or maximum rate of elevation change for each triangle

Aspect - the values of the output field represent the compass direction of the aspect; 0 is true north, a 90 degree

aspect is to the east etc. For flat triangles (slope = 0) the value of -1 is assigned for the aspect

Hill Shade - computes the brightness of each triangle based on a light source location.

Inputs:

A TIN (polygonZ) feature layer

Characteristics to be calculated

Parameters for Hill Shade (if Hill Shade option is selected)

azimuth - the azimuth angle of the light source. The azimuth is expressed in positive degrees from 0

to 360, measured clockwise from the north. The default is 315 degrees.

altitude - the altitude angle of the light source above the horizon. The altitude is expressed in positive

degrees, with 0 degrees at the horizon and 90 degrees directly overhead. The default is 45 degrees.

Outputs:

New polygon Z feature class. Several fields are added to the attribute table, depending on the options selected

[ET_ElMin] - minimum elevation values for each triangle

[ET_ElMax] - maximum elevation values for each triangle

[ET_ElMean] - mean elevation values for each triangle

[ET_Slope] - the slope of each triangle

[ET_Aspect] - the aspect of each triangle

[ET_Hill] - a Hill Shade value for each triangle depending on the input values for Azimuth and Altitude of the

light source

Notes:

A flat triangle (Slope = 0) will have an Aspect of -1

Example: TIN (PolygonZ) classified by

MIN Elevation Slope

Aspect Hill Shade

ToolBox implementation

(Go to TOP)

Calculates several characteristics (Slope, Aspect, Min & Max Elevation, Mean Elevation, Hillshade values) for each triangle of

a TIN (polygonZ)

Command line syntax

ET_GPAnalyzeTIN <input_dataset> <out_feature_class> <Light_Azimuth><Light_Altitude>

Parameters

Expression Explanation

<input_dataset> A PolygonZ feature class or feature layer.

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

{Light_Azimuth} A Double representing the azimuth angle of the light source. The azimuth is expressed in positive

degrees from 0 to 360, measured clockwise from the north. The default is 315 degrees.

{Light_Altitude} A Double representing the altitude angle of the light source above the horizon. The altitude is expressed

in positive degrees, with 0 degrees at the horizon and 90 degrees directly overhead. The default is 45

degrees.

Scripting syntax

ET_GPAnalyzeTIN (input_dataset out_feature_class Light_Azimuth Light_Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

AnalyzeTIN(pInFC As IFeatureClass, sOutFName As String,sElevationField As String, Optional dLightAzimuth As Double =

315, Optional dLightAltitude As Double = 45) As IFeatureClass

Copyright © Ianko Tchoukanski

ESRI TIN to PolygonZ

Go to ToolBox Implementation

Converts an ESRI TIN to PolygonZ feature class. Calculates several characteristics for each triangle.

Minimum elevation

Maximum elevation

Mean elevation

Slope - identifies the slope, or maximum rate of elevation change for each triangle

Aspect - the values of the output field represent the compass direction of the aspect; 0 is true north, a 90 degree

aspect is to the east etc. For flat triangles (slope = 0) the value of -1 is assigned for the aspect

Hill Shade- computes the brightness of each triangle based on a light source location.

Inputs:

A TIN in ESRI TIN format

Characteristics to be calculated

Parameters for Hill Shade (if Hill Shade option is selected)

azimuth - the azimuth angle of the light source. The azimuth is expressed in positive degrees from 0

to 360, measured clockwise from the north. The default is 315 degrees.

altitude - the altitude angle of the light source above the horizon. The altitude is expressed in positive

degrees, with 0 degrees at the horizon and 90 degrees directly overhead. The default is 45 degrees.

Outputs:

New PolygonZ feature class. Several fields are added to the attribute table, depending on the options selected

[ET_ElMin] - minimum elevation values for each triangle

[ET_ElMax] - maximum elevation values for each triangle

[ET_ElMean] - mean elevation values for each triangle

[ET_Slope] - the slope of each triangle

[ET_Aspect] - the aspect of each triangle

[ET_Hill] - a Hill Shade value for each triangle depending on the input values for Azimuth and Altitude of the

light source

Notes:

A flat triangle (Slope = 0) will have an Aspect of -1

Example: TIN (PolygonZ) classified by

MIN Elevation Slope

Aspect Hill Shade

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPEsriTINToPolygonZ <input_TIN> <out_feature_class> <Light_Azimuth><Light_Altitude>

Parameters

Expression Explanation

<input_TIN> A TIN layer or dataset

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

{Light_Azimuth} A Double representing the azimuth angle of the light source. The azimuth is expressed in positive

degrees from 0 to 360, measured clockwise from the north. The default is 315 degrees.

{Light_Altitude} A Double representing the altitude angle of the light source above the horizon. The altitude is expressed

in positive degrees, with 0 degrees at the horizon and 90 degrees directly overhead. The default is 45

degrees.

Scripting syntax

ET_GPEsriTINToPolygonZ (input_TIN out_feature_class Light_Azimuth Light_Altitude)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Features to 3D

Creates a 3D dataset from the features of existing 2D dataset (point, polyline or polygon) by deriving the

values from a surface (Raster or TIN) layer.

No 3D Analyst needed!

Inputs:

A feature layer (Point, Polygon, Polyline)

A surface layer (Raster or TIN)

Outputs:

New PointZ, PolylineZ or PolygonZ dataset (depending on the input).

Notes:

The input feature layer and surface layer must have the same Spatial Reference

The points/vertices that fall outside of the surface will get Z value of 999999 (NO DATA)

For advanced surface functionality check ET Surface - http://www.ian-ko.com

Copyright © Ianko Tchoukanski

http://www.ian-ko.com

Interpolate Contours

Go to ToolBox Implementation Go to .NET Implementation

Interpolates contours from a TIN (polygonZ)

Inputs:

A TIN (polygonZ) feature layer

Base value - the contour from which to begin generation of contours

Contour interval - Z value difference between adjacent contours in map units.

Outputs:

New polyline feature class. Several fields are added to the attribute table, depending on the options selected

[ET_Height] - the contour value

Notes:

If flat triangles (see TIN Notes) are present, some small problems might occur in the contours. These problems are

easy to identify using Export Nodes Wizard. Since the contour lines never intersect each other, there should not be

Regular Nodes in the contour layer. A regular node in this case will indicate an error (most probably caused by a flat

triangle). The excess polyline can be deleted.

The Smooth Polylines function can be used to smooth the shape of interpolated contour

The Generalize Polylines function can be used to remove the excess vertices

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPInterpolateContours <input_dataset> <out_feature_class> <Base_Contour><Contour_Interval>

Parameters

Expression Explanation

<input_dataset> A PolygonZ feature class or feature layer.

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<Base_Contour> A Double representing the the contour from which to begin generation of contours.

<Contour_Interval> A Double representing the Z value difference between adjacent contours in the units of the TIN.

Scripting syntax

ET_GPInterpolateContours (input_dataset out_feature_class Base_Contour Contour_Interval)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

InterpolateContours(pInFC As IFeatureClass, sOutFName As String, dBase As Double, dInterval As Double, Optional

bZContours As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Interpolate Z for Points

Go to ToolBox Implementation Go to .NET Implementation

Interpolates Z values for the features from a point layer.

Inputs:

A point feature class

A TIN (PolygonZ) feature class. See Interpolate TIN function

Outputs:

New point feature class. A field "ET_Z" is added to the attribute table and the interpolated Z values are stored in this

field.

Notes:

Source for the Z values should be a TIN (polygonZ) layer

The Z values are stored in a new field - "ET_Z"

Use Point To PointZ function to convert the points to a 3D feature class

The spatial references of both input datasets must have the same Geographic Coordinate System

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPInterpolateZForPoints <input_dataset> <Polygon_Z_TIN> <out_feature_class>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<Polygon_Z_TIN> A PolygonZ TIN feature class

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPInterpolateZForPoints (input_dataset, Polygon_Z_TIN, out_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

InterpolateZforPoints(pInFC As IFeatureClass, pTinFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Clip

Go to ToolBox Implementation Go to .NET Implementation

Clips a feature layer with the features of a polygon layer

Inputs:

Layer to be clipped - a Point, Polyline or Polygon layer

Clip layer - a polygon layer which features will be used for clipping

Outputs:

New feature class (Point, Polyline or Polygon depending on the type of the original layer)

The attributes are preserved

The spatial reference of the input data set is preserved

Notes:

The function works very much like the Clip function of the Geo Processing Wizard, however it preserves the Spatial

reference of the input data set. The assumption is that if the user keeps a dataset in certain projection he has reasons

for that, and all the products of this data set must be in the same projection.

Examples:

Input Layers Result

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPClip <input_dataset> <clip_dataset> <out_feature class> <fuzzy_tolerance>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<clip_dataset> A Polygon feature class or feature class.

NOTE: The spatial references of <clip_dataset> and the <input_dataset> must have the same

Geographic Coordinate System

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<fuzzy_tolerance> A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPClip (input_dataset, clip_dataset, out_feature class, fuzzy_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ClipSingle(pInFC As IFeatureClass, pClipFC As IFeatureClass, sOutFName As String, dFuzzy As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Batch Clip

Go to ToolBox Implementation Go to .NET Implementation

Clips a batch of feature layers with the features of a polygon layer

Inputs:

Layers to be clipped - a Point, Polyline or Polygon layers

Clip layer - a polygon layer which features will be used for clipping

Workspace where the result feature classes will be stored

Outputs:

New feature classes (Point, Polyline or Polygon depending on the types of the original layers)

The attributes are preserved

The spatial reference of the input data set is preserved

The new feature classes will be named after the original layers with suffix "_clip". If the name exists the suffix

will have a number at the end - "name_clip1", "name_clip2"...

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBatchClip <input_dataset;input_dataset;...> <clip_dataset> <out_workspace> {suffix} {fuzzy_tolerance}

Parameters

Expression Explanation

<input_dataset;input_dataset;...> A list of Point, Polyline or Polygon feature classes or feature layers

<clip_dataset> A Polygon feature class or feature layer.

NOTE: The spatial references of <erase_dataset> and all input_datasets must have the

same Geographic Coordinate System

<out_workspace> A String - the full name of the output feature workspace. Examples:

"c:\00\test_pgdb.mdb" - for Personal Geodatabase

"c:\00\results" - for shapefiles

 {suffix} A String - used for generating the names of the output feature classes

{fuzzy_tolerance} A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPBatchClip (input_datasets, clip_dataset, out_workspace, suffix, fuzzy_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BatchClip(pFCArray() As IFeatureClass, pClipFC As IFeatureClass, sOutWorkSpace As String, Optional sSuffix As String = "",

Optional dFuzzy As Double = 0) As Boolean

Copyright © Ianko Tchoukanski

Erase

Go to ToolBox Implementation Go to .NET Implementation

Erases a feature layer with the features of a polygon layer

Inputs:

Layer to be erased - a Point, Polyline or Polygon layer

Erase layer - a polygon layer which features will be used for erasing

Outputs:

New feature class (Point, Polyline or Polygon depending on the type of the original layer)

The attributes are preserved

The spatial reference of the input data set is preserved

Notes:

The function is the opposite of the Clip function.

Examples:

Input Layers Result

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPErase <input_dataset> <erase_dataset> <out_feature class> <fuzzy_tolerance>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<erase_dataset> A Polygon feature class or feature class.

NOTE: The spatial references of <erase_dataset> and the <input_dataset> must have the same

Geographic Coordinate System

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<fuzzy_tolerance> A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPErase (input_dataset, erase_dataset, out_feature class, fuzzy_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

EraseSingle(pInFC As IFeatureClass, pEraseFC As IFeatureClass, sOutFName As String, dFuzzy As Double) As

IFeatureClass

Copyright © Ianko Tchoukanski

Batch Erase

Go to ToolBox Implementation Go to .NET Implementation

Erases a batch of feature layers with the features of a polygon layer

Inputs:

Layers to be erased - a Point, Polyline or Polygon layers

Erase layer - a polygon layer which features will be used for erasing

Workspace where the result feature classes will be stored

Outputs:

New feature classes (Point, Polyline or Polygon depending on the types of the original layers)

The attributes are preserved

The spatial reference of the input data set is preserved

The new feature classes will be named after the original layers with suffix "_erase". If the name exists the

suffix will have a number at the end - "name_erase1", "name_erase2"...

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPBatchErase <input_dataset;input_dataset;...> <erase_dataset> <out_workspace> {suffix} {fuzzy_tolerance}

Parameters

Expression Explanation

<input_dataset;input_dataset;...> A list of Point, Polyline or Polygon feature classes or feature layers

<erase_dataset> A Polygon feature class or feature layer.

NOTE: The spatial references of <erase_dataset> and all input_datasets must have the

same Geographic Coordinate System

<out_workspace> A String - the full name of the output feature workspace. Examples:

"c:\00\test_pgdb.mdb" - for Personal Geodatabase

"c:\00\results" - for shapefiles

 {suffix} A String - used for generating the names of the output feature classes

{fuzzy_tolerance} A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPBatchErase (input_datasets, erase_dataset, out_workspace, suffix, fuzzy_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

BatchErase(pFCArray() As IFeatureClass, pEraseFC As IFeatureClass, sOutWorkSpace As String, Optional sSuffix As String

= "", Optional dFuzzy As Double = 0) As Boolean

Copyright © Ianko Tchoukanski

Merge Feature Layers

Go to ToolBox Implementation Go to .NET Implementation

Merges feature layers from the same type together.

Inputs:

A base layer. This layer defines what will be the type of the output. The fields of this layer will be preserved. If the

base layer has Z/M dimension, only layers with Z/M dimension can be merged to it

Point, PointZ, PointM

Polyline, PolylineZ, PolylineM

Polygon, PolygonZ, PolygonM

Layers to merge. If the a field name has the same name as a field in the base layer, the attributes will be retained.

Output file name

Outputs:

A feature class containing all the features from the base layer and the merge layers. If the base layer has Z/M

dimension, the output will have Z/M dimension as well. All the attributes are retained (if the fields are present in the

base layer)

Notes:

The function works very much like the Merge Layers function in the standard GeoProcessing wizard, but preserves

the Z/M dimension of the input layers (if the base layer has Z/M dimension.

ToolBox implementation

(Go to TOP)

Command line syntax - Merge Multi

ET_GPMergeMulti <base_dataset> <Input_dataset ;Input_dataset...> <out_feature class>

Parameters - Merge Multi

Expression Explanation

<base_dataset> A feature class or feature layer. The fields of this dataset will be preserved in the output feature class.

<Input_dataset

;Input_dataset...>

A list of the datasets to be be merged to the base dataset. Note: the feature classes should have the

same type geometry and a spatial reference with the same geographic coordinate system as the base

dataset.

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax - Merge Multi

ET_GPMergeMulti (base_dataset, input_datasets, out_feature class)

Command line syntax - Merge

ET_GPMerge<base_dataset> <merge_dataset > <out_feature class>

Parameters - Merge

Expression Explanation

<base_dataset> A feature class or feature layer. The fields of this dataset will be preserved in the output feature class.

<merge_dataset

>

A feature class or feature layer - the dataset to be be merged to the base dataset - should have the

same type geometry and a spatial reference with the same geographic coordinate system as the base

dataset.

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax - Merge

ET_GPMerge(base_dataset, merge_dataset , out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

MergeMulti(pInFC As IFeatureClass, pFCArray() As IFeatureClass, sOutFName As String) As IFeatureClass

MergeSingle(pInFC As IFeatureClass, pMergeFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Split By Location

Go to ToolBox Implementation Go to .NET Implementation

Clips the features of the input layer with the polygons of the split layer. Creates a new dataset for the features of the input layer

(or portions of them) contained by each polygon from the split layer

Inputs:

Layer to be clipped - a Point, Polyline or Polygon layer

Clip layer - a polygon layer which features will be used for clipping

Output folder

Name field - a field from the Clip layer that will be used for naming of the output datasets

Prefix - a text that will be used together with the Name field for generating names of the output datasets

Outputs:

New feature classes

The attributes are preserved

The spatial reference of the input data set is preserved

Notes:

If there are no features from the input layer that are fully or partially within a polygon from the clip layer - no dataset will

be created for this polygon

Examples:

The naming of the output dataset is based on the Name field selected and the prefix.

If the Prefix = "Rivers" and the Name field = "StateNames" the resulting feature classes will be named

 - "Rivers_Nevada.shp"

 - "Rivers_Texas.shp"

 - "Rivers_Arizona.shp"

 -

If the prefix box is left empty and the Name field = "StateNames" the resulting feature classes will be named

 - "Nevada.shp"

 - "Texas.shp"

 - "Arizona.shp"

 -

If the Prefix = "Roads" and the Name field = "StateNames" and in the output folder there is an existing feature class

named "Roads_Nevada.shp", the new feature class will be named "Roads_Nevada1.shp"

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSplitByLocation <input_dataset> <clip_dataset> <out_folder> <fuzzy_tolerance> <name_field> {prefix}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<clip_dataset> A Polygon feature class or feature layer. The features of this dataset will be used for clipping

<out_folder> A String - the name of the output folder (must exist)

<fuzzy_tolerance> A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

<name_field> A String - the name of a field from the clip dataset used for generating the names of the output names

{prefix} A String - used for generating the names of the output feature classes

Scripting syntax

ET_GPSplitByLocation (input_dataset, clip_dataset, out_folder, fuzzy_tolerance, name_field, prefix)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SplitByLocation(pInFC As IFeatureClass, pClipFC As IFeatureClass, sOutWorkSpace As String, dFuzzy As Double, sField As

String, Optional sPrefix As String = "") As Boolean

Copyright © Ianko Tchoukanski

Split By Attributes

Go to ToolBox Implementation Go to .NET Implementation

Splits a layer into separate datasets based on an the attribute values in the selected field

Inputs:

Layer to be split - a Point, Polyline or Polygon layer

Output folder

Name field - a field from the input layer that will be used for naming of the output datasets

Prefix - a text that will be used together with the Name field for generating names of the output datasets

Outputs:

New feature classes

The attributes are preserved

The spatial reference of the input data set is preserved

Examples:

The naming of the output dataset is based on the Name field selected and the prefix.

If the Prefix = "Rivers" and the Name field = "StateNames" the resulting feature classes will be named

 - "Rivers_Nevada.shp"

 - "Rivers_Texas.shp"

 - "Rivers_Arizona.shp"

 -

If the prefix box is left empty and the Name field = "StateNames" the resulting feature classes will be named

 - "Nevada.shp"

 - "Texas.shp"

 - "Arizona.shp"

 -

If the Prefix = "Roads" and the Name field = "StateNames" and in the output folder there is an existing feature class

named "Roads_Nevada.shp", the new feature class will be named "Roads_Nevada1.shp"

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSplitByAttributes <input_dataset> <out_folder> <name_field> {prefix}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_folder> A String - the name of the output folder (must exist)

<name_field> A String - the name of a field from the input layer used for splitting and for generating the names of the

output names

{prefix} A String - used for generating the names of the output feature classes

Scripting syntax

ET_GPSplitByAttributes (input_dataset, out_folder, name_field, prefix)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SplitByAttributes(pInFC As IFeatureClass, sOutWorkSpace As String, sField As String, Optional sPrefix As String = "") As

Boolean

Copyright © Ianko Tchoukanski

Transfer Polygon Attributes

Go to ToolBox Implementation Go to .NET Implementation

Transfers the attributes from one polygon layer (source) to another (target) based on their spatial location (overlay). The user specifies the method for transferring the

attributes of each field of the source polygon attribute table.

Inputs:

Target layer - a polygon layer that will receive the attributes

Source layer - a polygon layer which attributes will be transferred to the target layer

Fields which values will be transferred

The method that will be used to transfer the values for each field. The methods are discussed below

Count (only for numeric fields)

Value (only for numeric fields)

Type

Outputs:

New Polygon feature class.

All the attributes of the Target layer are preserved

The fields of the Source layer selected for transfer will be added to the attribute table and their values will be calculated based on the transfer

method specified

Transfer Methods:

The Source dataset has two polygons A and B. The Target dataset has a single polygon - Z. The portion of the

Target polygon that intersects with polygon "A" of the Source layer is polygon X, and the portion that intersects

with polygon B is polygon Y.

Count (sum proportion) - Typical application - transferring census data.

population_Z = population_A * area_X / area_A + population_B * area_Y / area_B

Value (weighted average) - Typical application - transferring rainfall data

rainfall_Z = (rainfall_A * area_X + rainfall_B * area_Y) / area_Z

Type (majority) - Typical application - transferring text data (soil type etc.)

IF area_X / area_Z > area_Y / area_Z THEN soiltype_Z = soiltype_A

IF area_X / area_Z < area_Y / area_Z THEN soiltype_Z = soiltype_B

Notes:

In order correct results to be obtained both Source and Target datasets should be clean from overlaps

The procedure performs cleaning of both Source and Target datasets to avoid incorrect results. The cleaning is performed on temporary datasets. No

changes are applied to the input data. If the target dataset has overlapping polygons, a new polygon representing the overlap will be created in the output

polygon dataset

The spatial references of the Source and the Target datasets must have the same geographic coordinate system

Example:

Source Data

Transfer Methods

County - Type

Population - Count

Rainfall - Value

Results

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPTransferAttributes <target_dataset> <source_dataset> <out_feature_class> <Field {Transfer Method};Field {Transfer Method}...>

Parameters

Expression Explanation

<target_dataset> A Polygon feature class or feature layer

<source_dataset> A Polygon feature class or feature layer.

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should not exist)

<Field {Transfer Method};Field

{Transfer Method}...>

A list of the fields to be transferred and the transfer method for each field.

Scripting syntax

ET_GPTransferAttributes (target_dataset, source_dataset, out_feature_class, fields to transfer)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

TransferAttributes(pTargetFC As IFeatureClass, pSourceFC As IFeatureClass, sOutFName As String, transferDic As Dictionary(Of String, String)) As IFeatureClass

Copyright © Ianko Tchoukanski

Remove Exact Duplicates

Go to ToolBox Implementation Go to .NET Implementation

Removes duplicates with exactly the same shape from a Point, Polyline or Polygon dataset.

Inputs:

A feature layer (Point, Polygon, Polyline)

OPTIONAL: A reference layer (Should have the same shape type as the input layer)

Outputs:

New Point, Polyline or Polygon dataset (depending on the input) with no features with duplicate shapes present. If a

reference dataset is specified, all the features from the input dataset that have exactly the same shapes with a feature

from the reference dataset will be excluded from the output.

Notes:

If a reference dataset is used, the features from the input dataset that have exactly the same geometry as features

from the reference dataset will be removed.

If features with exactly the same shapes are found in the input dataset, only the first feature will be saved in the output.

If you want to remove overlaps from partially overlapping geometries use Clean Polygon or Clean Polyline functions

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRemoveDuplicates<input_dataset> <Reference_dataset> <out_feature_class>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

{Reference_dataset} A Polyline or Polygon feature class or feature class.

NOTE: The shape type of {Reference_dataset} and the <input_dataset> must be the same.

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPRemoveDuplicates (input_dataset, Reference_dataset, out_feature_ class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

RemoveDuplicates(pInFC As IFeatureClass, sOutFName As String, Optional pRefFc As IFeatureClass = Nothing) As

IFeatureClass

Copyright © Ianko Tchoukanski

Symmetrical Difference

Go to ToolBox Implementation Go to .NET Implementation

Calculates the geometric intersection of the input polygon feature classes. Creates a polygon feature class that contains the

areas of both input datasets that do not overlap.

Inputs:

Two polygon feature classes

Fuzzy tolerance. Keep the fuzzy tolerance as small as possible to avoid unwanted approximation of the shapes.

Outputs:

New polygon feature class

Examples:

Input Layers Result

ToolBox implementation

(Go to TOP)

ET_GPSymmetricalDifference<first_dataset> <second_dataset> <out_feature class> <fuzzy_tolerance>

Parameters

Expression Explanation

<first_dataset> A Polygon feature class or feature layer

<second_dataset> A Polygon feature class or feature class.

NOTE: The spatial references of <first_dataset> and the <second_dataset> must have the same

Geographic Coordinate System

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<fuzzy_tolerance> A Double representing the Fuzzy tolerance (in the units of the input dataset) to be used

Scripting syntax

ET_GPSymmetricalDifference (first_dataset, second_dataset, out_feature_ class, fuzzy_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SymmetricalDifference(pInFC As IFeatureClass, pRefFc As IFeatureClass, sOutFName As String, dFuzzy As Double) As

IFeatureClass

Copyright © Ianko Tchoukanski

Spatial Join

This function is not available via the GUI of ET GeoWizards.

Joins the attributes of feature classes based on the spatial relationships of the features.

Command line syntax

ET_GPSpatialJoin <input_dataset> <join_dataset> <out_feature class> <Nearest | Within | Intersects |

Contains> {left_outer_join} {search_tolerance}

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<join_dataset> A Point, Polyline or Polygon feature class or feature layer. The features of this

dataset will be used for clipping

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full

name should not exist)

<Nearest | Within |

Intersects |

Contains>

Join Type. A String - the join type to be used. The available options are:

"Nearest" - Joins with the nearest feature in the join feature class. Only

features within a distance of {search_tolerance} will be joined. A

{search_tolerance} of -1 means infinity.

"Within" - Joins if a feature from the input dataset is within a feature of the

join dataset.

"Intersects" - Joins if a feature from the input dataset intersects a feature of

the join dataset.

"Contains" Joins if a feature from the input dataset contains a feature of the

join dataset.

{left_outer_join} A Boolean - Indicates whether a match is required before adding a record from the

source feature class to the result. If True, all records in the Source feature class are

added regardless of whether there is a match.

{search_tolerance} A Double representing the search tolerance

Scripting syntax

ET_GPSpatialJoin (input_dataset, join_dataset, out_feature class, join_type, left_outer_join,

search_tolerance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

SpatialJoin(pInFC As IFeatureClass, pJoinFC As IFeatureClass, sOutFName As String, sJoinType As String,

bLeftOuter As Boolean, dSearchTol As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Create feature class

Go to ToolBox Implementation Go to .NET Implementation

Creates new feature class with user defined type, spatial reference and fields.

Inputs:

Type of the feature class to be created

Point

Polyline

Polygon

Options for additional dimension

Z - if the feature class will contain shapes with Z values

M - if the feature class will contain shapes with M values

Spatial Reference (can be copied from the Data Frame or from any feature layer loaded in the map)

Attribute fields definitions (added in ET GeoWizards 9.1).

Outputs:

An empty feature class (Point, Polyline or Polygon depending on the selected type)

Notes:

The function works very much like the ArcCatalog function New ==> feature class , but from ArcMap

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCreateFeatureClass<geometry_type> <out_feature_class>{out_spatial_reference}{Z} {M}

Parameters

Expression Explanation

<geometry_type> A String defining the type of geometry of the new feature class - "Point", "Polyline", "Polygon",

"Multipoint"

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{out_spatial_reference} A String - the spatial reference of the dataset to be created

{Z} A Boolean - indicating whether the output will be Z enabled

{M} A Boolean - indicating whether the output will be M enabled

Scripting syntax

ET_GPCreateFeatureClass(geometry_type, out_feature_class,out_spatial_reference, Z, M)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateFeatureClass(sOutFName As String, sGeometryType As String, pOutputSRef As ISpatialReference, Optional bZ As

Boolean = False, Optional bM As Boolean = False) As IFeatureClass

Copyright © Ianko Tchoukanski

Sort Shapes

Go to ToolBox Implementation Go to .NET Implementation

Sorts the features of a feature layer according to user specified fields and order methods.

Inputs:

A feature layer

Point

Polyline

Polygon

Fields to be used for sorting

Sort order for each field

Outputs:

New feature class sorted according the selected fields

How to use:

Select layer to be sorted and location for the new feature class

A list of all the fields in the layer is presented in a list box. Using the arrow buttons move the fields to be used for

sorting to the sort fields list box

Use the Up and Down buttons to arrange the fields in the order they will be used in the sorting process. Click the Next

button

For each field select sort order (Ascending or Descending). Clicking on the cell with the sort order toggles the method

Click the Finish button

Notes:

The fields are used for sorting in the order they have in the selected fields list box

The function might be very useful:

if there are small polygons hidden beneath larger ones. In this case sorting descending by the area will show

all the polygons

if point data has to be displayed using Pie charts. If the points are close to each other some of the pies might

be hidden by the adjacent ones with larger values in classification field. If the shapes are sorted in

descending order using the classification field the small pies will be visible on top of the big ones

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPSortShapes <input_dataset> <out_feature class> <Field {Sort Method};Field {Sort Method}...>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<Field {Sort

Method};Field

{Sort

Method}...>

A list of the fields to be transferred and the sort method for each field. Note: If the Sort Method string is

not "Ascending" or "Descending" (case sensitive) a descending method will be used.

Scripting syntax

ET_GPSortShapes (input_dataset, out_feature class, sort fields)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

SortShapes(pInFC As IFeatureClass, sOutFName As String, sortDictionary As Dictionary(Of String, String)) As IFeatureClass

Copyright © Ianko Tchoukanski

Move Shapes

Go to ToolBox Implementation Go to .NET Implementation

Moves the features of a feature layer according to user specified translation vector .

Inputs:

A feature layer

Point

Polyline

Polygon

Input type - a way the translation vector will be defined

From X,Y & To X,Y

dX & dY

From Point & To Point from a point layer

Move parameters - parameters defining the translation vector depending on the selected input type

If the selected input type is "From & To Points from a layer" a point layer with only two points in it have to be

selected

Outputs:

New feature class

The attributes are preserved

The spatial reference of the input layer is preserved

Notes:

There is a standard ArcGIS Move function, but the Move Shapes Wizard gives more control over the operation,

especially if multiple layers are to be moved.

The standard ArcGIS Move function may be convenient for moving individual features, but it is very slow when many

features (data set) are to be moved.

If the From & To Points from a layer" is to be used

Use New Feature Class function to create new point feature class

Start editing

Input From Point (snap can be used to place the point exactly at desired location)

Input To Point

Stop editing

Use this layer in the Move Shapes Wizard

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPMoveShapes<input_dataset> <out_feature_class> {from_X} {from_Y} {to_X} {to_Y} {from_to_point_dataset} {Delta_X}

{Delta_Y}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

{from_X} A Double - X coordinate of the origin point.

{from_Y} A Double - Y coordinate of the origin point.

{to_X} A Double - X coordinate of the destination point.

{to_Y} A Double - Y coordinate of the destination point.

{from_to_point_dataset} A Point feature class or feature layer. It must have at least two points - the first point will be used

as origin and the second point will be used as destination.

{Delta_X} A Double - Movement in X direction

{Delta_Y} A Double - Movement in Y direction

Scripting syntax

ET_GPMoveShapes(input_dataset, out_feature_class,from_X,from_Y, to_X, to_Y)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\moved"

arcpy.ET_GPMoveShapes(input_dataset, result, 0.00, 0.00,1.00,1.00)

.NET implementation

(Go to TOP)

MoveShapes(pInFC As IFeatureClass, sOutFName As String, dDeltaX As Double, dDeltaY As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Rotate Shapes

Go to ToolBox Implementation Go to .NET Implementation

Rotates the features of a feature layer according to user specified rotation point and angle .

Inputs:

A feature layer

Point

Polyline

Polygon

Input type - a way the rotation point will be defined

input X,Y

point from a feature layer

Rotation angle - angle in decimal degrees, positive values will rotate the features counterclockwise and negative -

clockwise

Outputs:

New feature class

The attributes are preserved

The spatial reference of the input layer is preserved

Notes:

There is a standard ArcGIS Rotate tool, but the Rotate Shapes Wizard gives more control over the operation,

especially if multiple layers are to be moved

If rotation point from a point layer is to be used

Use New Feature Class function to create new point feature class

Start editing

Input Origin Point (snap can be used to place the point exactly at desired location)

Stop editing

Use this layer in the Rotate Shapes Wizard

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRotateShapes<input_dataset> <out_feature_class><input_dataset> <out_feature_class> {rotation_angle}

{origin_point_dataset} {Origin_X} {Origin_Y}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{rotation_angle} A Double - Rotation angle in Degrees - positive values will rotate the features counterclockwise

and negative - clockwise

{origin_point_dataset} A Point feature class or feature layer. It must have at least one point to be used as origin of rotation.

{Origin_X} A Double - X of the origin point to be used for rotation

{Origin_Y} A Double - Y of the origin point to be used for rotation

Scripting syntax

ET_GPRotateShapes(input_dataset, out_feature_class,rotation_angle,"", Origin_X, Origin_Y)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\rotated"

arcpy.ET_GPRotateShapes(input_dataset, result, 45, "",0.00,0.00)

.NET implementation

(Go to TOP)

RotateShapes(pInFC As IFeatureClass, sOutFName As String, dOriginX As Double, dOriginY As Double, dRotationAngle As

Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Scale Shapes

Go to ToolBox Implementation Go to .NET Implementation

Scales the features of a feature layer according to user specified anchor point X and Y scale factors .

Inputs:

A feature layer

Point

Polyline

Polygon

Input type - a way the anchor point will be defined

input X,Y

point from a feature layer

X scale factor

Y scale factor

Outputs:

New feature class

The attributes are preserved

The spatial reference of the input layer is preserved

Notes:

There is a standard ArcGIS Scale tool, but the Scale Shapes Wizard gives more control over the operation, especially

if multiple layers are to be moved

If anchor point from a point layer is to be used

Use the New Feature Class function to create new point feature class

Start editing

Input Origin Point (snap can be used to place the point exactly at desired location)

Stop editing

Use this layer in the Scale Shapes Wizard

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPScaleShapes<input_dataset> <out_feature_class> {Scale_X} {Scale_Y} {origin_point_dataset} {Origin_X} {Origin_Y}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{Scale_X} A Double - defining the scale factor in X direction

{Scale_Y} A Double - defining the scale factor in Y direction

{origin_point_dataset} A Point feature class or feature layer. It must have at least one point to be used as origin for scaling.

{Origin_X} A Double - X of the origin point to be used for rotation

{Origin_Y} A Double - Y of the origin point to be used for rotation

Scripting syntax

ET_GPScaleShapes(input_dataset, out_feature_class,Scale_X, Scale_Y,"", Origin_X, Origin_Y)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

input_dataset = "C:\\data\\pg1.shp"

result = "C:\\data\\fgdb_test.gdb\\scaled"

arcpy.ET_GPScaleShapes(input_dataset, result, 2.0,1.0, "",0.00,0.00)

.NET implementation

(Go to TOP)

ScaleShapes(pInFC As IFeatureClass, sOutFName As String, dOriginX As Double, dOriginY As Double, dScaleX As Double,

dScaleY As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Explode
Go to ToolBox Implementation Go to .NET Implementation

Explodes the milti-part features from a polygon or polyline layer. The resulting data set will not contain multi-part features

Inputs:

A polygon or polyline feature layer

Update rules for the numeric fields to be transferred.

Outputs:

A feature class with no multipart shapes present.

The numeric attributes will be transferred according the user specified rules. The rest of the attributes will be copied

over

Notes:

To select an update rule for each numeric field - click on the appropriate cell in the field list

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPExplode <input_dataset> <out_feature class> {Update_Rules_List}

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{Update_Rules_List} A String - a list of fields with their update rules.

Scripting syntax

ET_GPExplode (input_dataset, out_feature class,Update_Rules_List)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET GeoWizards.tbx"

input_dataset = "C:\\data\\suburbs.shp"

result = "C:\\data\\fgdb_test.gdb\\single_part"

arcpy.gp.ET_GPExplode (input_dataset, result, "Population Proportion; City Copy)

.NET implementation

(Go to TOP)

ExplodeMultiPart(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Closest Feature Distance

Go to ToolBox Implementation Go to .NET Implementation

Calculates the distance for each feature of a dataset to the closest feature from the same dataset (Point, Polyline or Polygon).

The function is slow and can hang on large datasets. If the input dataset is a Point one, we recommend using the Find Closest

Point function added in version 11.1

Inputs:

A feature layer

Search tolerance - the maximum distance to search for neighboring features.

Outputs:

A new feature class. The attribute table of the resulting feature class will have three new fields

[ET_ID] - the ID of the feature

[ET_Dist] - the distance from the feature to the closest feature.

[ET_Closest] - the ID of the closest feature.

Notes:

If the distance from a feature to the closest feature is larger than the Search Tolerance then the [ET_Dist] and [ET_

Closest] will have a value of -1

If the layer is of polygon type all the polygons that are within another polygon will have a distance of 0. If the distance

to the polygons boundaries has to be calculated, convert first the polygon layer to a polyline one using Polygon To

Polyline Wizard.

The larger the search tolerance is, the slower the process will be

The distance is calculated in the Spatial Reference of the input dataset.

If there are more than one feature with the same distance to a feature (for example intersecting polylines) only one of

the ID's will be recorded in the [ET_ Closest] field.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPClosestFeatureDistance<input_dataset> <out_feature_class> <search_distance>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

<search_distance> A Double representing the maximum distance between the points within a cluster - in the units of the

spatial reference of the input dataset

Scripting syntax

ET_GPClosestFeatureDistance(input_dataset,out_feature class, search_distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

ClosestFeatureDistance(pInFC As IFeatureClass, sOutFName As String, dSearchTol As Double) As IFeatureClass

Copyright © Ianko Tchoukanski

Fix Geometry

Go to ToolBox Implementation Go to .NET Implementation

Exports the features of the input feature dataset to a new feature class. Removes the null and empty shapes. Fixes some

geometric inconsistencies of the geometries.

Inputs:

A Point, Polyline or Polygon feature layer

Outputs:

New feature class - no null or empty shapes present

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFixGeometry <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Point, Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPFixGeometry (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FixGeometry(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Delete Multiple Fields

Go to ToolBox Implementation Go to .NET Implementation

Deletes multiple fields from a layer. If the source of the layer is a feature class, the operation can be performed directly on the

source. If the source is a coverege or geodatabase, new feature class is the only option

Inputs:

A feature layer

Point

Polyline

Polygon

Multipoint

Option to create a new feature class or to delete the fields in the input feature class.

Fields to be deleted

Outputs:

New feature class - if the option is selected and output specified.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPDeleteMultipleFields <input_dataset> {out_feature class} <Field;Field...>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer

{out_feature

class}

A String - the full name of the output feature class (A feature class with the same full name should not

exist). If not specified the fields will be deleted from the input dataset.

<Field ;Field...> A list of the fields to be be deleted.

Scripting syntax

ET_GPDeleteMultipleFields (input_dataset, out_feature_class, fields)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

DeleteMultipleFields(pInFC As IFeatureClass, fieldList As List(Of String), Optional sOutFName As String = "") As

IFeatureClass

Copyright © Ianko Tchoukanski

Order Fields

Go to ToolBox Implementation Go to .NET Implementation

Exports a feature layer to a new feature class. The user selects the fields to be exported and the order in which they will

appear in the attribute table.

Inputs:

A feature layer

Point

Polyline

Polygon

Fields to be exported

The order in which the fields will be added to the attribute table of the new feature class.

Outputs:

A new feature class. The fields in the attribute table are permanently ordered.

How to use:

Select a layer to be exported and a location for the new feature class

A list of all the fields in the layer is presented in a list box. Using the arrow buttons move the fields to be exported to

the order fields list box

Use the Up and Down buttons to arrange the fields in the order you want them to appear in the attribute table.

Click the Finish button

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPOrderFields <input_dataset> <out_feature class> <Field;Field...>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<Field ;Field...> A list of the fields to be be used. The order of the fields in the list will be the order of the fields in the

attribute table of the output feature class. Note: only the fields in the list will be available in the output

feature class

Scripting syntax

ET_GPOrderFields (input_dataset, out_feature class, ordered fields)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

OrderFields(pInFC As IFeatureClass, sOutFName As String, ByVal fieldList As List(Of String)) As IFeatureClass

Copyright © Ianko Tchoukanski

Redefine Fields

Go to ToolBox Implementation

Change field names and definitions.

Inputs:

A feature layer

Point

Polyline

Polygon

New field names, length, precision, scale

Outputs:

A new feature class.

How to use:

Select a layer to be exported and a location for the new feature class

A list of all the fields in the layer is presented in a grid where the user can change the names and

definitions of the fields

Notes:

The type of the fields can't be changed

The new field names should be max 10 characters long

If the source layer is a Personal Geodatabase layer the numeric fields will be reported incorrectly in

the grid with Precision = 0 and Scale = 0.

If the Precision and Scale are incorrectly set to 0, the original field definition will be used.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPRedefineFields<input_dataset> <out_feature_class> <field_to_redefine>

Parameters

Expression Explanation

<input_dataset> A Polyline feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same

full name should not exist)

<field_to_redefine> A String - a list of field names and new field definitions

"OldName NewName Length/Precision Scale"

Scripting syntax

ET_GPRedefineFields(input_dataset, out_feature_class, field_to_redefine)

See the explanations above:

<> - required parameter

{} - optional parameter

Example Python script:

import arcpy

arcpy.ImportToolbox("C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET

GeoWizards.tbx")

arcpy.gp.toolbox = "C:/Program Files/ET SpatialTechniques/ET GeoWizards 11.0 for ArcGIS 10.1/ET

GeoWizards.tbx"

input_dataset = "C:\\data\\suburbs.shp"

result = "C:\\data\\fgdb_test.gdb\\redefined"

arcpy.gp.ET_GPRedefineFields(input_dataset, result, "Population Pop 12 0; City CityNew 6 0; Meters

Length 12 2")

Copyright © Ianko Tchoukanski

Copy Fields

Go to ToolBox Implementation Go to .NET Implementation

Copies fields from one dataset to another.

Inputs:

Target feature layer

Source feature layer - the layer that will be used as a source for the field definitions

Outputs:

The fields selected will be copied to the attribute table of the target layer

How to use:

Select a target and source layers

Select fields from the source layer to be copied over and the order in which the field will be added to the attribute table

of the target layer

Notes:

The new fields will be added after the fields already existing in the target attribute table

If the target layer has a feature class source and the fields with long names (if present) will not be added to the target

If the target attribute table has a field with the same name as a field selected to be copied, the field will not be added to

the target

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCopyFields <target_dataset> <source_dataset> <Field;Field...>

Parameters

Expression Explanation

<target_dataset> A feature class or feature layer

<source_dataset> A feature class or feature layer

<Field ;Field...> A list of the fields to be be copied from the source to the target dataset.

Scripting syntax

ET_GPCopyFields (input_dataset, source_dataset, fields_to_copy)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CopyFields(pTargetFC As IFeatureClass, pSourceFC As IFeatureClass, fieldList As List(Of String)) As Boolean

Copyright © Ianko Tchoukanski

Rename Field

Changes the name of an existing field in the attribute table.

Command line syntax

ET_GPRenameField <input_dataset> <old_name> <new_name>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer.

<old_name> A String - the name of the field to be changed.

Note. Some fields can not be renamed (Shape, OID, FID etc.)

<new_name> A String - the new name of the field. The new field name should not duplicate the

name of an existing field. It should not contain special charecters (space, "%", "&" etc.)

Scripting syntax

ET_GPRenameField (input_dataset,old_name, new_name)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

RenameField(pInFC As IFeatureClass, sOldName As String, sNewName As String) As Boolean

Copyright © Ianko Tchoukanski

Add Attribute Index

This function is not available via the GUI of ET GeoWizards.

Adds attribute index to a feature class. An index can improve the performance of queries that evaluate an

attribute's values.

Note: Can be used only on feature classes!

Command line syntax

ET_GPAttributeIndex <input_dataset> <field_to_index> {unique} {ascending}

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer (the source should be a feature class)

<field_to_index> A String - the name of the field that will be indexed

{unique} A Boolean - Indicates if the index is unique.

{ascending} A Boolean - Indicates if the index is based on ascending order

Scripting syntax

ET_GPAttributeIndex (input_dataset, field_to_index, unique, ascending)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

Public Function AddAttributeIndex(ByVal pInFC As IFeatureClass, ByVal sFieldToIndex As String, Optional

ByVal bUnique As Boolean = True,Optional ByVal bAscending As Boolean = True) As Boolean

Copyright © Ianko Tchoukanski

Add Spatial Index

This function is not available via the GUI of ET GeoWizards.

Adds a spatial index to a feature class. Having a current spatial index ensures that a high level of

performance is maintained when drawing and working with the feature class's features.

Note: Can be used only on feature classes!

Command line syntax

ET_GPSpatialIndex <input_dataset>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer (the source should be a feature class)

Scripting syntax

ET_GPSpatialIndex (input_dataset)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

AddSpatialIndex(pInFC As IFeatureClass) As Boolean

Copyright © Ianko Tchoukanski

Calculate Area

This function is not available via the GUI of ET GeoWizards.

Calculates the area of polygons. Please see the explanations below

Command line syntax

ET_GPCalculateArea <input_dataset> {calc_spatial_reference} { | Square Meters | Square Kilometers | Acres

| Square Miles | Hectares | Square Yards | Square Feet} {Area_field}

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer.

{calc_spatial_reference} The spatial reference in which the calculations will be performed. If not

specified the spatial reference of the input dataset will be used.

NOTE: The spatial reference of the input dataset and the Calculations spatial

reference must have the same Geographic Coordinate System

{ | Square Meters |

Square Kilometers |

Acres | Square Miles |

Hectares | Square

Yards | Square Feet}

Output Units. A String that defines the units in which the area will be

calculated.

NOTE: If the the Calculations spatial reference is a Geographic Coordinate

System, this parameter will be ignored and the results will be calculated in

decimal degrees!!!

{Area_field} Area Field. A String indicating an existing field in which the results for the area

will be stored. If not specified a new field "ET_Area" will be created

Scripting syntax

ET_GPCalculateArea (input_dataset, calc_spatial_reference, output_units, Area_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

CalculateArea(pInFC As IFeatureClass, Optional pSpatialReference As ISpatialReference = Nothing,

Optional sAreaUnits As String = "", Optional sAreaField As String = "") As Boolean

Copyright © Ianko Tchoukanski

Calculate Length

This function is not available via the GUI of ET GeoWizards.

Calculates the length of polylines or the perimeter of polygons. Please see the explanations below

Command line syntax

ET_GPCalculateLength <input_dataset> {calc_spatial_reference} { | Meters | Kilometers | Feet | Miles | Yards

| Inches | Centimeters | Millimeters} {Length_field}

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer.

{calc_spatial_reference} The spatial reference in which the calculations will be performed. If not

specified the spatial reference of the input dataset will be used.

NOTE: The spatial reference of the input dataset and the Calculations spatial

reference must have the same Geographic Coordinate System

{ | Meters | Kilometers |

Feet | Miles | Yards |

Inches | Centimeters |

Millimeters}

Output Units. A String that defines the units in which the length will be

calculated.

NOTE: If the the Calculations spatial reference is a Geographic Coordinate

System, this parameter will be ignored and the results will be calculated in

decimal degrees!!!

{Length_field} Length Field. A String indicating an existing field in which the results for the

length will be stored. If not specified a new field "ET_Length" will be created

Scripting syntax

ET_GPCalculateLength (input_dataset, calc_spatial_reference, output_units, Length_field)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

CalculateLength(pInFC As IFeatureClass, Optional pSpatialReference As ISpatialReference = Nothing,

Optional sDistanceUnits As String = "", Optional sLengthField As String = "") As Boolean

Copyright © Ianko Tchoukanski

Calculate

This function is not available via the GUI of ET GeoWizards.

Calculates some spatial characteristics of the shapes. The results are added in new fields in the attribute

table of the original dataset.

Note: For more flexible Area or Length calculations see Calculate Area and Calculate Length tools

Command line syntax

ET_GPCalculate <input_dataset> <Area | Length | XYStart | XYEnd | XYMiddle | XYCenter | XYLabel | XY | Z

| M>

Parameters

Expression Explanation

<input_dataset> A feature class or feature layer.

<Area | Length |

XYStart |

XYEnd |

XYMiddle |

XYCenter |

XYLabel | XY |

Z | M>

Calculate Task. A String - defines the calculation to be performed

Area - the area of polygons in the units of the spatial reference of the dataset

- Polygon datasets

Length - the length of polylines or the perimeter of polygons in the units of the

spatial reference of the dataset - Polygon or Polyline datasets/

XYStart - the coordinates of the start point of polylines or polygons - Polygon

or Polyline datasets.

XYStart - the coordinates of the end point of polylines or polygons - Polygon

or Polyline datasets.

XYMiddle - the coordinates of the middle point of polylines - Polyline

datasets.

XYCentre - the coordinates of the centroid of polygons - Polygon datasets.

XYLabel - the coordinates of the label points of polygons - Polygon datasets.

XY - the coordinates of points - Point dataset

Z - the Z value of points - PointZ dataset

M - the M value of points - PointZ dataset

Scripting syntax

ET_GPCalculate (input_dataset, calc_task)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

CalculateValues(pInFC As IFeatureClass, sTask As String) As Boolean

Copyright © Ianko Tchoukanski

Point Coordinates

This function is not available via the GUI of ET GeoWizards.

Calculates the coordinates of the points from a point dataset in the units of the spatial reference of the

dataset, Decimal Degrees or Degrees Minutes Seconds. Two new fields are added to the attribute table. The

names depending on the output units are:

If the calculation is in the units of the spatial reference of the dataset

ET_X

ET_Y

If the calculation is in Decimal Degrees or Degrees Minutes Seconds

ET_Lat

ET_Lon

If the input dataset is projected and the selected output units are Decimal Degrees or Degrees Minutes

Seconds, the shapes are projected on the fly to the Geographic Coordinate System of the projection of the

input dataset before calculating the coordinates.

Command line syntax

ET_GPPointCoordinates <input_dataset> < | Dataset Units | Decimal Degrees | Degrees Minutes Seconds>

{precision} {use_direction}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer.

< | Dataset

Units | Decimal

Degrees |

Degrees

Minutes

Seconds>

Output Units. The units to be used for the calculations.

{precision} An Integer between 0 and 8 representing the number of places after the decimal point

to be used.

{use_direction} A Boolean. If True - a direction for coordinates in Degrees Minutes Seconds

(35º25'34.23"W), If False - (-35º25'34.23")

Scripting syntax

ET_GPPointCoordinates (input_dataset, output_units, precision, use_direction)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Polygon Coordinates

This function is not available via the GUI of ET GeoWizards.

Calculates the coordinates of the centroid or the label points of the polygons from a polygon dataset in the

units of the spatial reference of the dataset, Decimal Degrees or Degrees Minutes Seconds.. Two new fields

are added to the attribute table. The names depending on the Calculate option and the output units and the

are:

If the calculation is in the units of the spatial reference of the dataset

Center_X or Label_X

Center_Y or Label_Y

If the calculation is in Decimal Degrees or Degrees Minutes Seconds

Center_Lat or Label_Lat

Center_Lon or Label_Lon

If the input dataset is projected and the selected output units are Decimal Degrees or Degrees Minutes

Seconds, the shapes are projected on the fly to the Geographic Coordinate System of the projection of the

input dataset before calculating the coordinates.

Command line syntax

ET_GPPolygonCoordinates <input_dataset> < | Center | Label> < | Dataset Units | Decimal Degrees |

Degrees Minutes Seconds> {precision} {use_direction}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer.

< | Center |

Label>

Calculate Option. A String indicating what coordinates will be calculated - the Centroid

or the Label point

< | Dataset

Units | Decimal

Degrees |

Degrees

Minutes

Seconds>

Output Units. The units to be used for the calculations.

{precision} An Integer between 0 and 8 representing the number of places after the decimal point

to be used.

{use_direction} A Boolean. If True - a direction for coordinates in Degrees Minutes Seconds

(35º25'34.23"W), If False - (-35º25'34.23")

Scripting syntax

ET_GPPolygonCoordinates (input_dataset, calculate_option, output_units, precision, use_direction)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

Polyline Coordinates

This function is not available via the GUI of ET GeoWizards.

Calculates the coordinates of points at user specified position along the polylines of a polyline dataset in the

units of the spatial reference of the dataset, Decimal Degrees or Degrees Minutes Seconds. Two new fields

are added to the attribute table. The names depending on the Point Position and the output units and the are:

If the calculation is in the units of the spatial reference of the dataset

Point0_X, Point50_X, ...

Point0_Y or Point50_Y

If the calculation is in Decimal Degrees or Degrees Minutes Seconds

Point0_Lat or Point50_Lat

Point0_Lon or Point50_Lon

If the input dataset is projected and the selected output units are Decimal Degrees or Degrees Minutes

Seconds, the shapes are projected on the fly to the Geographic Coordinate System of the projection of the

input dataset before calculating the coordinates.

Command line syntax

ET_GPPolylineCoordinates <input_dataset> <point_position> < | Dataset Units | Decimal Degrees | Degrees

Minutes Seconds> {precision} {use_direction}

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer.

<point_position> A Double between 0 and 1 indicating the position of the point along the polyline which

coordinates will be calculated. 0 indicates the Start Point, 1 - End Point, 0.5 - Middle

point, 0.1 - a point for which the distance from the start point along the polyline is 10%

of the total length of the polyline

< | Dataset

Units | Decimal

Degrees |

Degrees

Minutes

Seconds>

Output Units. The units to be used for the calculations.

{precision} An Integer between 0 and 8 representing the number of places after the decimal point

to be used.

{use_direction} A Boolean. If True - a direction for coordinates in Degrees Minutes Seconds

(35º25'34.23"W), If False - (-35º25'34.23")

Scripting syntax

ET_GPPolylineCoordinates (input_dataset, point_position, output_units, precision, use_direction)

See the explanations above:

<> - required parameter

{} - optional parameter

Copyright © Ianko Tchoukanski

ET GeoWizards Linear Referencing

Linear Referencing (or Dynamic Segmentation) is a very important GIS feature. In many cases (road,

river management systems etc.) the data is not represented with X & Y coordinate pairs, but rather in

one dimensional linear referencing system. ArcGIS has a comprehensive set of tools for creating,

displaying and analyzing such data. Most of these tools however are available only to the users with

ArcEditor or ArcInfo licenses.

ET GeoWizards 9.3 introduces a new set of functions that enables the ArcView license holders to

perform tasks standard only in the top licensing options of ArcGIS

Functions Available:

ET GeoWizards Functions Standard ArcGIS Tools

available with any ArcGIS license available in

Create routes from existing polylines ArcEditor and ArcInfo

Calibrate Routes with points ArcEditor and ArcInfo

Locate point features along routes ArcInfo

Locate polygon features along routes ArcInfo

Dissolve Route Events ArcInfo

Concatenate Route Events ArcInfo

Intersect Route Events ArcInfo

Union Route Events ArcInfo

Since the ET GeoWizards functions work in a very similar fashion to the standard

tools we strongly recommend our users to read the "Linear Referencing in ArcGIS"

book , provided by ESRI on the ArcGIS instillation media in pdf format. The book

gives a good overview of the Linear Referencing and discusses in detail the options

available.

Create routes from existing polylines

Creates routes by merging existing polylines that have the same common identifier.

Inputs:

A Polyline feature layer

Route Identifier field

Method for route creation

Output Spatial Reference

Output:

A PolylineM feature class. The polylines are measured depending on the method selected - based

on the length of the polylines, the values of a single field or two fields (From Measure and To

Measure)

Measuring Methods

Using the lengths of the source polylines.

The user controls the direction of the routes by specifying the coordinate priority of the

starting measure (see notes)

If there are spatial gaps between the polylines to be joined, the user specifies whether

these gaps to be taken into account when assigning the measures (see notes)

Using the values in a single numeric field

The user controls the direction of the routes by specifying the coordinate priority of the

starting measure (see notes)

If there are spatial gaps between the polylines to be joined, the user specifies whether

these gaps to be taken into account when assigning the measures (see notes)

Using known measures in two numeric fields. From Measure and To Measure.

Very important factor in this case is the orientation of the original polylines. The polylines

must be oriented in the direction of increasing measure

Since known measures are used for each polyline, the Spatial Gaps parameter is not used

when using this method

Notes:

Coordinate Priority (not used if the third method above is used). This parameter defines the

direction of the output routes and the order in which the original polylines will participate in the route.

The available options are

Lower Left ("ll")

Lower Right ("lr")

Upper Right ("ur"

Upper Left ("ul")

The options are determined by the minimum bounding rectangle for each route. If the "Lower Left"

option is used the routes will start from South-West All original polylines will be oriented to go in

North-East direction and the measures will increase in this direction.

Original Polylines

Route

Coordinate Priority = "Lower Left"

Route

Coordinate Priority = "Lower Right"

Spatial Gaps: In many cases a route consists of disjoined parts A road for example that have the

same name on both sides of a river might be represented by a single route. For such cases the user

has to specify how the spatial gaps between the disjoined parts of the route will be handled when

calculating the measures.

Original Polylines

Ignore Spatial Gaps option selected -

Continuous measurements

Ignore Spatial Gaps option not selected -

The gap distance incorporated into the

measures. The straight-line distance

between the disjoined nodes added to

the measures

The user can specify output spatial reference that is different from the projection of the input dataset.

The Output Spatial Reference must have the same geographic coordinate system as the input

dataset

Copyright © Ianko Tchoukanski

Calibrate routes with points

Adjusts route measures with existing points using measure information stored as attributes in the Point Attribute Table or the M values of pointM dataset. The calibration process inserts new vertices to the routes in the places where the

calibration points intersect the routes. The measure value of these vertices is set to the measure value of the corresponding point. The measures of the existing vertices is adjusted according to the interpolation/extrapolation option

selected and the adjustment method selected.

Inputs:

A PolylineM feature layer - to be calibrated

Route Identifier field

A Point or PointM feature layer - to be used for calibration

Point Route Identifier field

Point Measure field (only if the measures are to be taken from a field)

Search tolerance - only the points that are closer to the route than this tolerance will be used for calibration

Interpolation/Extrapolation options

Adjustment method

Output Spatial Reference

Output:

A PolylineM feature class. The measures are adjusted based on the point dataset and the options selected by the user

Interpolation options:

 Three options are available. They can be used in any combination

Extrapolate before calibration points - the measures of the preexisting vertices before the first calibration point will be adjusted

Interpolate between calibration points - the measures of the preexisting vertices between the first and last calibration points will be adjusted

Extrapolate after calibration points - the measures of the preexisting vertices after the last calibration point will be adjusted

Original route and Calibration points

All options used for calibration. The measures of the vertices before, between and after

the calibration points are adjusted

Only "Interpolate between" option used. The vertices before and after calibration points

preserve their original measures

Adjustment methods:

Shortest path distance - the distance between the measure points is used to establish the calibration ratio. Then this ratio is applied to the preexisting vertices based on their distance to the calibration points.

The existing measure distance - The measures of the calibration points are calculated based on the existing measures. This measures are compared to the new measures to establish the calibration ratio. Then this ratio is

applied to the preexisting vertices based on their M values points.

Notes:

Spatial Gaps: In many cases a route consists of disjoined parts A road for example that have the same name on both sides of a river might be represented by a single route. For such cases the user has to specify how the

spatial gaps between the disjoined parts of the route will be handled when calculating the measures.

Ignore Spatial Gaps option selected - Continuous measurements

Ignore Spatial Gaps option not selected - The gap distance incorporated into the measures. The straight-line distance between the disjoined nodes

added to the measures

The user can specify output spatial reference that is different from the projection of the input dataset. The Output Spatial Reference must have the same geographic coordinate system as the input dataset and the calibration

points dataset

Copyright © Ianko Tchoukanski

Locate point features along routes

Finds the route and measure information for the points from a Point layer and creates a point event table.

Only the points that are within specified search tolerance of routes will be recorded in the output table. The

output table will contain a route identifier and a measure for each point. The wizard allows the resulting data

to be added to the map as an event layer or a standalone table.

Inputs:

A PolylineM feature layer - the routes to be used

Route Identifier field - the values in this field will be recorded in the output event table

A Point feature layer which points will be located on the routes

Search tolerance - only the points that are closer to the route than this tolerance will be written to

the output event table

Output:

A dbf table with event record for each point located.

The dbf table will contain all the original fields of the point dataset

Three new fields will be added

[ET_KYE] - the route identifier field. The values will correspond to the route on which each

point was located

[ET_M] - the measure of each point

[ET_Dist] - the distance of the points from the routes

Notes:

If the option to add the result as an event layer, two additional fields will be available

[ET_Angle] - the normal angle of the route where the event is placed

[ET_Error] - indicates whether the event was properly located. If the value in this field

indicates some kind of error the shape of the event point will be empty.

Copyright © Ianko Tchoukanski

Locate polygon features along routes

Finds the route and measure information at the geometric intersection of the input polygon layer and the

route layer and creates a line event table. The output table will contain a route identifier, the FROM and TO

measures of the route on which each polygon was located. If a polygon intersects more than one route

multiple records will be created in the output table for this polygon. The wizard allows the resulting data to be

added to the map as a line event layer or a standalone table.

Inputs:

A PolylineM feature layer - the routes to be used

Route Identifier field - the values in this field will be recorded in the output event table

A Polygon feature layer which features will be located on the routes

Output:

A dbf table with event record for each intersection of a polygon with a route.

The dbf table will contain all the original fields of the polygon dataset

Three new fields will be added

[ET_KYE] - the route identifier field. The values will correspond to the route on which each

polygon was located

[ET_FromM] - the FROM measure of each intersection

[ET_ToM] - the TO measure of each intersection

Notes:

If the option to add the result as an event layer, an additional field will be available

[ET_Error] - indicates whether the event was properly located. If the value in this field

indicates some kind of error the shape of the event point will be empty.

Copyright © Ianko Tchoukanski

Dissolve/Concatenate Event Layers

Both Dissolve and Concatenate functions combine records in an event table if the events are on the same

route and have the same value in a specified field. The functions are available for line event layers only. The

wizard allows the resulting data to be added to the map as a line event layer or a standalone table.

Dissolve will combine the events if their measures overlap

Concatenate will combine the events if the TO measure of one event is equal to the FROM measure

of the next event

Input:

An line event layer

A dissolve/concatenate field - the values of the records in this field will be used for

dissolving/concatenating of the events

Output:

A new dbf table with the aggregated events

The dbf table will contain all the original fields of the table of the input event layer

Notes:

If the option to add the result as an event layer, an additional field will be available

[ET_Error] - indicates whether the event was properly located. If the value in this field

indicates some kind of error the shape of the event point will be empty.

Copyright © Ianko Tchoukanski

Intersect/Union Event Layers

Both Union and Intersect functions combine two line event layers in a single line event table.

Union will split the input linear events at their intersections and writes them to the new event table

Intersect will write in the output event table only the overlapping events from the input event layers

Input:

An input line event layer

An overlay line event layer

Output:

A new dbf table with the events that result from the overlaying the input layers

The dbf table will contain all the original fields of the input and overlay tables

Notes:

If the option to add the result as an event layer, an additional field will be available

[ET_Error] - indicates whether the event was properly located. If the value in this field

indicates some kind of error the shape of the event point will be empty.

Copyright © Ianko Tchoukanski

COGO Inverse

Go to ToolBox Implementation Go to .NET Implementation

Converts a polyline or a polygon data set to a feature class containing only single segmented polylines. For each segment the

COGO attributes are calculated and added to the resulting attribute table. The attributes of the original features are copied to

the output features.

Inputs:

A Polyline, PolylineZ(M), Polygon, PolygonZ(M) feature layer

Options:

Direction Angle Type - the type of the output angle for the direction of the segments

Polar
North

Azimuth

South

Azimuth

Quadrant

Bearing

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Precision

Linear - integer indicating the number of places after the decimal point for the output linear measurements

Angular - integer indicating the number of places after the decimal point for the output angular measurements

Outputs:

New polyline feature class

Attribute fields added to the attribute table of the output feature class

Always

[Direction] - the direction of the segment. The angle can be measured in arithmetic or geographic

notation depending on the user choice

[Distance] - the length of the segment measured in the units of the original dataset

[Delta] - for circular arcs only. The central angle of the circular arc in degrees

[Radius] - for circular arcs only. The radius of the circular arc

[Tangent] - for circular arcs only. The distance from the Start/End points of the circular arc to the

intersection point of the tangents

[ArcLength] - for circular arcs only. The length of the circular arc

[Delta] - for circular arcs only. The central angle of the circular arc

[Side] - the side of the circular arc compared with the tangent in the start point

User choice

[XStart] - X coordinate of the start point of the segment

[YStart] - Y coordinate of the start point of the segment

[XEnd] - X coordinate of the end point of the segment

[YEnd] -Y coordinate of the end point of the segment

User choice - shapes with Z values only

[ZStart] - Z coordinate of the start point of the segment

[ZEnd] - Z coordinate of the end point of the segment

[Slope] - the slope of the segment in degrees (from -90 to 90)

User choice - shapes with M values only

[MStart] - M coordinate of the start point of the segment

[MEnd] - M coordinate of the end point of the segment

Notes :

The Z or M fields will be added only if the source dataset has Z/M values

Since the feature class format cannot handle true arcs, if the source dataset is Geodatabase (Personal or SDE) and

contains true arcs, these arcs will be represented by their linear approximation. One record will be created for each arc

and all the COGO attributes of the original arc will be calculated

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPCogoInverse <input_dataset> <out_feature class> <NorthAzimuth | SouthAzimuth | Polar | QuadrantBearing> <DD |

DMS | Radians | Gradians | Gons> {linear_precision} {angular_precision} {add_start_end_coordinates} {add_ZM_attributes}

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<NorthAzimuth |

SouthAzimuth | Polar |

QuadrantBearing>

Direction Type. A String - the type of the output angle for the direction of the segments.

<DD | DMS | Radians |

Gradians | Gons>

Direction Unit. A String - the type of the output angle for the direction of the segments.

{linear_precision} A Number representing the number of places after the decimal point for the output linear

measurements

{angular_precision} A Number representing the number of places after the decimal point for the output angular

measurements

{add_start_end_coordinates} A Boolean indicating whether the Start & End point coordinates will be recorded for the

segments

{add_ZM_attributes} A Boolean indicating whether the Z/M values of the segments will be recorded in the output

attribute table. If the input features do not have Z/M values this parameter is set to False

automatically

Scripting syntax

ET_GPCogoInverse (input_dataset, out_feature class, direction_type, direction_unit, linear_precision, angular_precision,

add_start_end_coordinates, add_ZM_attributes)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CogoInverse(pInFC As IFeatureClass, sOutFName As String, bCoords As Boolean, bZattrib As Boolean, sDirType As String,

sDirUnits As String, iLinPrec As Integer, iAngPrec As Integer) As IFeatureClass

Copyright © Ianko Tchoukanski

Features To Envelopes

Go to ToolBox Implementation Go to .NET Implementation

Creates a polygon from the envelope of each feature in the input feature class. Attributes of the original features are

transferred to the envelope polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Expand distance. A distance in the units of the spatial reference of the input dataset with which the envelope of each

feature will be expanded. The parameter is optional. The default value is 0.

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset Result Dataset Overlay

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFeaturesToEnvelopes<input_dataset> <out_feature class> {Expand_Distance}

Parameters

Expression Explanation

<input_dataset> A Polyline, Polygon or Multipoint feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full name should

not exist)

{Expand_Distance} A double - distance in the units of the spatial reference of the input dataset with which the envelope of

each feature will be expanded. The parameter is optional. The default value is 0 - no expand

Scripting syntax

ET_GPFeaturesToEnvelopes (input_dataset, out_feature_ class, Expand_Distance)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesToEnvelopes(pInFC As IFeatureClass, sOutFName As String, Optional dExpandDistance As Double = 0) As

IFeatureClass

Copyright © Ianko Tchoukanski

Features To Minimum Bounding Circles

Go to ToolBox Implementation Go to .NET Implementation

Creates a circular bounding polygon from each feature in the input feature class. Attributes of the original features are

transferred to the resulting polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset Result Dataset Overlay

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFeaturesToCircles <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polyline, Polygon or Multipoint feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax

ET_GPFeaturesToCircles (input_dataset, out_feature_ class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesToCircles(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Features To Convex Polygons

Go to ToolBox Implementation Go to .NET Implementation

Creates a convex polygon from each feature in the input feature class. Attributes of the original features are transferred to the

convex polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Outputs:

A polygon feature class. All attributes of the original features are preserved

Examples:

Input Dataset Result Dataset Overlay

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFeaturesToConvexPolygons<input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polyline, Polygon or Multipoint feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax

ET_GPFeaturesToConvexPolygons(input_dataset, out_feature_ class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesToConvexPolygons(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Features To Minimum Bounding Rectangles

Go to ToolBox Implementation Go to .NET Implementation

Creates a bounding rectangle from each feature in the input feature class. Three ways to align the rectangles

are available. Attributes of the original features are transferred to the resulting polygons.

Inputs:

A Polyline or Polygon feature class

The orientation of the rectangles to be created

Along the longest segment of the polygon boundary

Along the longest axis of the original polygons

Minimum area rectangle

Outputs:

A polygon feature class. All attributes of the original features are preserved

New fields added to the attribute table

ET_Length - the length longest side of the bounding rectangle in the units of the Spatial

Reference of the input feature class

ET Width - the length shortest side of the bounding rectangle in the units of the Spatial

Reference of the input feature class

Examples:

Bounding rectangle aligned with the longest

segment of the boundary of the input polygon

Bounding rectangle aligned with the longest

axis of the boundary of the input polygon

Minimum area bounding rectangle

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPFeaturesToRectangles <input_dataset> <out_feature class><Alignment>

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full

name should not exist)

{Alignment} A string defining the orientation of the rectangles to be created

"Longest_Segment" - aligns the rectangle along the longest segment of the

polygon boundary

"Longest_Axis" - aligns the rectangle along the longest axis of the original

polygons

"Min_Area" - Minimum area rectangle

Scripting syntax

ET_GPFeaturesToRectangles (input_dataset, out_feature_ class, Alignment)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

FeaturesToRectangles(pInFC As IFeatureClass, sOutFName As String, Optional sAlignment As String = "")

As IFeatureClass

Copyright © Ianko Tchoukanski

Lines from Points Direction and Distance

Go to ToolBox Implementation Go to .NET Implementation

Creates single segmented polylines from a point dataset that has in the attribute table fields which values represent direction

and distance from each point to the target point.

Inputs:

A Point dataset

Direction Field - a field in the attribute table that has the values for the directions of the lines to be created

Distance Field - a field in the attribute table that has the values for the distances (length) of the lines to be created

Direction Angle Type - the type of the output angle for the direction of the segments

Polar
North

Azimuth

South

Azimuth

Quadrant

Bearing

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Outputs:

New polyline feature class

The attributes of the input point features are preserved

Example :

Input Points Point Attribute Table Resulting Polylines

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPLinesFromPointDirDist <input_dataset> <out_feature class><direction_field><distance_field> <NorthAzimuth |

SouthAzimuth | Polar | QuadrantBearing> <DD | DMS | Radians | Gradians | Gons>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature class> A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<direction_field> A String representing the name of a field in the in the attribute table of the input dataset field

name. The field has the values for the directions of the lines to be created.

<distance_field> A String representing the name of a field in the in the attribute table of the input dataset field

name. The field has the values for the distances of the lines to be created.

<NorthAzimuth |

SouthAzimuth | Polar |

QuadrantBearing>

Direction Type. A String - the type of the output angle for the direction of the segments.

<DD | DMS | Radians |

Gradians | Gons>

Direction Unit. A String - the type of the output angle for the direction of the segments.

Scripting syntax

ET_GPLinesFromPointDirDist (input_dataset, out_feature class,direction_field,distance_field, direction_type, direction_unit)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

LinesFromPointDirDist(pInFC As IFeatureClass, sOutFName As String, sDirField As String, sDistField As String, sDirType As

String, sDirUnits As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Points Along Polylines

Go to ToolBox Implementation Go to .NET Implementation

Creates points along the polylines of the input dataset.

The points are located on user specified relative distance from the start point of the polylines.

The user can specify an offset distance and on which side of the polylines the offset points will be

created.

If "Both" option is selected for each polyline will be created 2 points (one on the left and one on the

right side), otherwise one point per polyline will be created.

Inputs:

A polyline feature layer

Relative distance along polylines. A value between 0 and 1 indicating the distance from the from

point as a ratio.

0 indicates the start point

0.5 indicates a point in the middle of the polyline

1 indicates the end of the polyline

Side of the points - three options are available

Both - 2 points will be created on both sides of the polylines

Left - one point per polyline will be created and will be located on the left side of the

polylines

Right - one point per polyline will be created and will be located on the right side of the

polylines

Offset -a distance from the polyline for the points to be created. If not specified, the points will be on

the polylines

Outputs:

New Point feature class with one or two (depending on the Side option) points per polyline

The attributes of the original polylines are preserved

The following fields are added to the point attribute table

[ET_ID] - the FID of original polylines.

[ET_Along] - the distance from the start point of the polyline to the point created.

[ET_Offset] - the distance of the point created to the corresponding polyline.

Notes:

The offset is measured in the units of the spatial reference of the input dataset

The output spatial reference is the one of the input polyline dataset

Examples:

Two Point datasets created

RIGHT:

Side = "Right"

Distance Along = 0.5

Offset Distance = 50 feet

LEFT:

Side = "Left"

Distance Along = 0.5

Offset Distance = 50 feet

 ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPLinesFromPointDirDist <input_dataset> <out_feature_class> <relative_distance> <Both | Left | Right>

{offset}

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same

full name should not exist)

<relative_distance> A Double representing the relative distance along the polyline. A value between 0

and 1 indicating the distance from the from point as a ratio.

0 indicates the start point

0.5 indicates a point in the middle of the polyline

1 indicates the end point of the polyline

<Both | Left | Right> A String - On which side of the polyline will be placed the point if the offset

distance is used - three options are available

"Both" - the middle of the station lines will intersect the original polylines

"Left" - station lines will be located on the left side of the polylines

"Right" - station lines will be located on the right side of the polylines

 {offset} A Double representing the distance from the polyline for the points to be created. If

not specified, the points will be on the polylines

Scripting syntax

ET_GPLinesFromPointDirDist (input_dataset, out_feature_class,relative_distance, offset_side, offset)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsAlongPolylines(pInFC As IFeatureClass, sOutFName As String, dAlong As Double, sSide As String,

Optional dOffset As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Create Station Lines

Go to ToolBox Implementation Go to .NET Implementation

Creates equally spaced lines along the polylines from the input dataset. The station lines are single segmented

polylines perpendicular to the input polylines (at the location of the station).

Inputs:

A polyline feature layer

Distance between stations

Side of the station lines - three options are available

Both - the middle of the station lines will intersect the original polylines

Left - station lines will be located on the left side of the polylines

Right - station lines will be located on the right side of the polylines

Length of the station lines can be specified

Constant - all the station lines will have the same user specified length

M Values - the M value of the input polylines (at the location of the station) will be used for length of

the station lines. The input polylines must have M values.

Z Values - the Z value of the input polylines (at the location of the station) will be used for length of

the station lines. The input polylines must have Z values.

Outputs:

New Polyline feature class with single segmented polylines perpendicular to the input polylines, distributed

along the input polylines based on the user selected options.

The attributes of the original polylines are preserved

The following fields are added to the point attribute table

[ET_ID] - the FID of original polylines.

[ET_Angle] - the angle of the polyline at the station.

[ET_Station] - the distance from the start point of the polyline to the station line

[ET_Length] - the length of the station line

Notes:

The distance is measured in the units of the spatial reference of the input dataset

The output spatial reference is the one of the input polyline dataset

Examples:

Side =

"Both"

Step =

200

meters

Constant

Length =

100

meters

Side =

"Right"

Step =

100

meters

Constant

Length =

100

meters

Side =

"Left"

Step =

20

meters

Length

from Z

values

 ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPStationLines<input_dataset> <out_feature class> <station_distance> <Both | Left | Right> <Constant | M

Values | Z Values> {lines_length}

Parameters

Expression Explanation

<input_dataset> A Polyline or Polygon feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name

should not exist)

<station_distance> A Double representing the distance (in the units of the spatial refere4nce of the input feature

class) between the station lines along the input polylines

<Both | Left |

Right>

A String representing the side of the station lines in relation to the original polylines.

<Constant | M

Values | Z Values>

A String indicating where the length of the station lines will be taken from

 {lines_length} A Double representing the length (in the units of the spatial refere4nce of the input feature

class) of the station lines. Used only with "Constant" option.

Scripting syntax

ET_GPStationLines(input_dataset, out_feature class,station_distance, side, length_from, lines_length)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

CreateStationLines(pInFC As IFeatureClass, sOutFName As String, dStationDistance As Double, sSide As String,

sLengthFrom As String, Optional dLength As Double = 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Points To Pie Segments

<

Go to ToolBox Implementation Go to .NET Implementation

Creates Pie segment polygons from points, pie direction, radius and central angle.

Inputs:

A Point dataset

Direction Field - a field in the attribute table that has the values for the directions of the circular segments to be

created. The direction defines the central radius of the segment.

Distance Field - a field in the attribute table that has the values for the radius of the circular segments to be created

Central Angle Field - a field in the attribute table that has the values for the central angle of the pie circular segments

to be created

Direction Angle Type - the type of the output angle for the direction of the segments

Polar
North

Azimuth

South

Azimuth

Quadrant

Bearing

Direction Angle Units

DD - Decimal Degrees

DMS - Degrees Minutes Seconds

Rad - Radians

Grad - Gradians (One gradian is equal to 1/400 circle)

Gon - Gons - used in some European countries (One gon is equal to 1/400 circle)

Outputs:

New polyline feature class

The attributes of the input point features are preserved

Example :

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointsToPieSegments <input_dataset> <out_feature class> <distance_field> <direction_field> <angle_field>

<NorthAzimuth | SouthAzimuth | Polar | QuadrantBearing> <DD | DMS | Radians | Gradians | Gons>

Parameters

Expression Explanation

<input_dataset> A Point feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

<distance_field> A String representing the name of a field in the in the attribute table of the input dataset. The field has

the values for the radius of the circular segments to be created

<direction_field> A String representing the name of a field in the in the attribute table of the input dataset. The field has

the values for the directions of the circular segments to be created. The direction defines the central

radius of the segment.

<angle_field> A String representing the name of a field in the in the attribute table of the input dataset. The field has

the values for the central angle of the pie circular segments to be created.

<NorthAzimuth |

SouthAzimuth |

Polar |

QuadrantBearing>

Direction Type. A String - the type of the output angle for the direction of the segments.

Go to the main page of the function for a description

<DD | DMS |

Radians |

Gradians | Gons>

Direction Unit. A String - the type of the output angle for the direction of the segments.

Go to the main page of the function for a description

Scripting syntax

ET_GPPointsToPieSegments (input_dataset, out_feature class,direction_field,distance_field, angle_field, direction_type,

direction_unit)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PointsToPieSegments(pInFC As IFeatureClass, sOutFName As String, sDistField As String, sDirField As String, sAngleField

As String, sDirType As String, sDirUnits As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygons to Equal Area Circles

Go to ToolBox Implementation Go to .NET Implementation

Creates a circular polygon with equal area for each polygon from the input feature class. The center of the circle is located in

the centroid of the original polygon. The attributes of the original features are transferred to the resulting polygons.

Inputs:

A Polygon feature layer or feature class.

Outputs:

New polygon feature class.

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonsToEqualAreaCircles <input_dataset> <out_feature_class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_class> A String - the full name of the output feature class (A feature class with the same full name should

not exist)

Scripting syntax

ET_GPPolygonsToEqualAreaCircles (input_dataset,out_feature_class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonsToEqualAreaCircles(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Polygons to Maximum Inscribed Circles

Go to ToolBox Implementation Go to .NET Implementation

Creates from each polygon in the input feature class a circular polygon representing the circle with maximum

radius that can be inscribed in the input polygon. The center of the is located in the "deepest" point of each

polygon. Attributes of the original features are transferred to the resulting polygons.

Inputs:

A Polyline, Polygon or Multipoint feature class

Outputs:

A polygon feature class. All attributes of the original features are preserved

A new field [ET_Radius] is added and populated for each polygon.

Note:

The function uses an interpolation algorithm and the precision of the calculation might not be 100%

Examples:

Example 1

Example 2 - Europe

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPolygonToMaxInscribedCircles <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A Polygon feature class or feature layer

<out_feature_

class>

A String - the full name of the output feature class (A feature class with the same full

name should not exist)

Scripting syntax

ET_GPPolygonToMaxInscribedCircles (input_dataset, out_feature_ class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

PolygonsToMaxInscribedCircles(pInFC As IFeatureClass, sOutFName As String) As IFeatureClass

Copyright © Ianko Tchoukanski

Utility functions for .NET

Some functions available in the .Net implementation of ET GeoWizards that will help with handling the input

parameters.

Feature Class from Path - gets a feature class from a string representing the full name of the

dataset

FeatureClassFromPath(sOutFName As String) As IFeatureClass

Does Feature class exist

DoesFCExist(ByVal pInFC As IFeatureClass) As Boolean

Delete feature class

DeleteFC(ByVal pInFC As IFeatureClass) As Boolean

Get temp feature class name. Derives a name of a feature class in the temp folder of ET

GeoWizards that does not exist

GetTempFCName(ByVal sOutType As String) As String

Get Default Fuzzy tolerance

GetDefaultFuzzy(ByVal pInFC As IFeatureClass) As Double

Release Concurrent License - for the concurrent versions only

ReleaseConcurrentLicense() As Boolean

Copyright © Ianko Tchoukanski

ET GeoWizards is not a free program. It has however many functions that are free - can be used with the unregistered version

with no limitations.

In the User Interface In Arc Toolbox , Model Builder, Python Scripts

Basic functions

Create New feature class

Delete Multiple Fields

Sort Shapes

Move Shapes

Rotate Shapes

Scale shapes

Generate

Ungenerate

Explode multi-part features

Vector Grid

Closest Feature Distance

Order Fields

Redefine Fields

Copy Fields

Conversion functions

Polygon To Polyline

Polygon To Point

Polyline To Point

Polyline To Polygon

Point To Polyline

Polyline To Polygon

Multipoint To Point

Shape Z (M) To Shape

Polygon Z (M) To Point

Polyline Z (M) To Point

Point Z (M) To Point

Point To Polygon Z (M)

Point To Polyline Z (M)

Point To Point Z (M)

Geoprocessing functions

Clip layer

Erase layer

Merge Layers

Surface functions

Convex Hull

Calculate True Surface Area

Polyline functions

Generalize polyline layer

Densify polyline layer

Get PolylineZ characteristics

Flip Polylines

Point functions

Create Point Grid

Point Distance

Station Points

Calculate

Calculate Area

Calculate Length

Rename Field

Add Attribute Index

Add Spatial Index

Get Point Coordinates

Get Polygon Coordinates

Get Polyline Coordinates

Copyright © Ianko Tchoukanski

TRIANGULATED IRREGULAR NETWORK

The TIN model represents a surface as a set of contiguous, non-overlapping triangles. Within each triangle the surface is represented by

a plane. The triangles are made from a set of points called mass points.

Mass points can occur at any location, the more carefully selected, the more accurate the model of the surface. Well-placed mass points

occur where there is a major change in the shape of the surface, for example, at the peak of a mountain, the floor of a valley, or at the

edge (top and bottom) of cliffs.

The TIN model is attractive because of its simplicity and economy and is a significant alternative to the regular raster of the GRID model.

Quick comparison:

 TIN GRID

Advantages

ability to describe the

surface at different level

of resolution

efficiency in storing data

easy to store and manipulate

easy integration with raster databases

smoother, more natural appearance of derived terrain features

Disadvantages

in many cases require

visual inspection and

manual control of the

network

inability to use various grid sizes to reflect areas of different complexity of relief.

The Delaunay Triangulation

Delaunay triangulation is a proximal method that satisfies the requirement that a circle drawn through the three nodes of a triangle will

contain no other node

 Delaunay triangulation has several advantages over other triangulation methods:

The triangles are as equi-angular as possible, thus reducing potential numerical precision problems created by long skinny

triangles

Ensures that any point on the surface is as close as possible to a node

The triangulation is independent of the order the points are processed

TINs from contours

Contours are a common source of digital elevation data. In general all the vertices of the contour lines are used as mass points for

triangulation. In many cases this will cause the presence of flat triangles in the surface.

Flat triangles are created whenever a triangle is formed from three nodes with the same elevation value

Flat triangles are frequently generated along contours when the sample points occur along the contour at a distance that is less than the

distance between contours. When these "excess" vertices are not removed , the Delaunay triangulation discovers that the closest sample

points are those along the same contour, causing the generation of flat triangles.

The flat triangles have a slope of 0 and do not have defined aspect. They might cause problems when the surface is used for modeling.

Example:

The contours The triangulation - We can see several flat triangles here

The elevation
The slope- The green areas indicate

Slope = 0 (flat triangles)

How can we avoid the flat triangles?

By adding more mass points

Generalizing the contours

By adding break lines

Break lines

Linear features which define and control surface behavior in terms of smoothness and continuity are called break lines.

Types break lines:

Soft break lines are used to ensure that linear features and polygon edges are maintained in the tin surface model by enforcing the

break line as tin edges. However, they do not define interruptions in surface smoothness – break lines with no Z value

Hard break lines define interruptions in surface smoothness – break lines with Z value

Example:

 No break lines Soft break lines Hard break lines

The Data

The

Triangulation

The Surface

3D View

Storing TINs

There are basically two ways of storing triangulated networks:

Triangle by triangle

Points and their neighbors

The first method is better for storing attributes (slope, aspect ..) for each triangle, but uses more storage space. The second one is better

for generating contours and uses less storage space, but slope, aspect , etc must be calculated and stored separately.

Copyright © Ianko Tchoukanski

Open Table of Contents

NOTE: ET GeoWizards 9.6 and above offer two functions - Smooth Polygons and Generalize Polygons that implement the

entire process.

Contents:

The purpose

ET GeoWizards functions available

Definitions

The importance

Smoothing/Generalizing polygons. Why it is so difficult?

So, how to smooth polygons?

How to restrict the Smoothing and remove the unnecessary vertices after smoothing?

What about the attributes?

This is getting too complex....

A diagram of the process:

The purpose:

The purpose of this document is to discuss the processes of simplification (generalization) and smoothing features in

ArcGIS (ArcView license). While the generalization and smoothing of polylines is comparatively simple process,

when applied to polygons there are certain complications connected to the topological relationships between the

adjacent polygons.

ET GeoWizards functions available

ArcGIS has standard Generalize and Smooth functions, but they are available only for users with ArcEditor or ArcInfo

licenses

ET GeoWizards offers the following tools to ArcGIS users with any license :

Generalize - Generalizes (reduces the number of vertices required to represent a polyline) the features of a

polyline dataset using the Douglas-Poiker algorithm

Densify - Densifies (adds vertices to polyline at a user-specified tolerance) the features of a polyline

dataset.

Smooth - Smoothes the features of a polyline dataset using three different smoothing algorithms

Bezier curve

B - Spline

T - Spline (Tension Spline)

Note that all the functions above are available only for polylines. In this document we'll describe a procedure that will make use

of these tools to Generalize/Smooth polygons.

All the links in this document are to the functions available via the interface of ET GeoWizards. If the procedure is to

be performed in the Model Builder - refer to the corresponding tools available in the ET GeoWizards ToolBox. If

performed via a VBA script - refer to ET GeoWizards Scripting

Definitions:

Generalization - the process of removing some vertices from a polyline or polygon boundary without

destroying its essential shape.

Smoothing - the process of introducing new vertices in a polyline or polygon boundary in order to achieve

shapes with no sharp corners.

The importance:

In many cases the data that we receive is over sampled. Nowadays a big part of the GIS data is captured via GPS

devices that get locations automatically every few seconds. In this fashion a straight line sometimes is described by

many vertices when actually only two vertices are needed. This not only increases the size of the data, but makes

certain geoprocessing operations on the data to need extra computer memory to complete. Note that the memory

needed is dependant not only on the number of features, but also on the complexity of these features, measured in

the total number of vertices.

Over sampled polygons Polygons represented with the significant vertices only

Smoothing/Generalizing polygons. Why it is so difficult?

In the Shapefiles and GeoDatabases (not in the coverages) each polygon has its own outline. This means that the

common boundary between two adjacent polygons is represented by two coincident polylines. If we

smooth/generalize these adjacent polygons each of the outlines will be smoothed/generalized separately and

DIFFERENTLY. As a result we will get gaps and/or overlaps on the boundary. With other words we will end up with

destroyed topology.

Further in this document all the examples and explanations will be based on the Smoothing, because the effect is

more pronounced, but everything is applicable for the generalization process as well.

Original Polygons Polygons Smoothed directly

The example above visualizes the gaps resulting from Smoothing the polygons directly.

So, how to smooth polygons?

Lets think a bit in the good old Coverage way, where all the geometries were stored as arcs and the polygons were

build from these arcs (no duplicate geometry on the boundary of two adjacent polygons). If something was changed

in the geometry of the Arcs it reflected in the polygons built from them. If we smooth/generalize an Arc, the two

polygons in which this Arc participates will be smoothed/generalized EQUALLY.

Here is the ArcGIS procedure that emulates this behavior. All the functions are available in ET GeoWizards.

Convert the polygons to polylines (this just creates a polyline shapefile from the polygon boundaries).

Polygon To Polyline function

Clean the polylines (this will create all intersections and remove the duplicate polylines on the boundaries

between two adjacent polygons). Clean Polyline function

Smooth the polylines (there is no duplicate polylines, so no topological problems will be introduced). Smooth

Polyline function

Build new polygons from smoothed polylines (this will give us smoothed topologically correct polygons).

Build Polygons function

1. Polygon To Polyline 2. Clean Polylines

3. Smooth Polylines (B-Spline method used) 4. Build Polygons

How to restrict the Smoothing and remove the unnecessary vertices after smoothing?

The degree of smoothing can be controlled by the parameters used in the Smooth function. In some cases

however due to the lack of enough vertices the parameters used can not restrict the smoothing too much. In

such cases, we can introduce new vertices to the cleaned polylines (Densify function) before proceeding with

smoothing. After smoothing we can remove the unnecessary vertices before building the polygons.

Polygons smoothed with the procedure above The degree of smoothing to high

Original vertices Vertices after Densify

Smoothed densified polylines Resulting smoothed polygons

The procedure gets just a bit more complex

Convert the polygons to polylines (this just creates a polyline shapefile from the polygon boundaries).

Polygon To Polyline function

Clean the polylines (this will create all intersections and remove the duplicate polylines on the boundaries

between two adjacent polygons). Clean Polyline function

Insert new vertices - Densify Polylines function

Smooth the polylines (there is no duplicate polylines, so no topological problems will be introduced). Smooth

Polyline function

Remove the excess vertices - Generalize Polylines function

Build new polygons from smoothed polylines (this will give us smoothed topologically correct polygons).

Build Polygons function

What about the attributes?

A reasonable question. In the process of converting the polygons to polylines and cleaning the polylines we've

lost the polygon attributes. We can rectify this by adding a three simple steps to the procedure:

Get the label points of the smoothed polygons - Polygon To Point function with the Label Point option

Get the attributes of the original polygons to the label points created above - The standard ArcGIS

Spatial Join function (Polygons to Points). If used in the Model Builder - the Spatial Join tool of ET

GeoWizards

Get the attributes from the label points to the smoothed polygons - The standard ArcGIS Spatial Join

function (Points To Polygons). If used in the Model Builder - the Spatial Join tool of ET GeoWizards

This is getting too complex....

ET GeoWizards offers three ways of achieving the above procedure

Via the User Interface - just perform the steps one by one using the Wizards available

With a simple VBA script - many of the functions of ET GeoWizards are available for use within VBA

scripts or custom applications written in any COM language. See an example with working code here

Create a Geoprocessing Model in the Model Builder (ArcGIS 9.0 and above only) using the ET

GeoWizards geoprocessing tools made available in version 9.2. A model performing the task is included

in the download of ET GeoWizards for ArcGIS 9.x

A diagram of the process:

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Scripting/scripting_SmoothPolygon_process.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/ToolBox/toolbox_userguide.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/ToolBox/toolbox_userguide.htm

logo_h1.jpg (4952 bytes)

ET GeoWizards HOME

ToolBox User Guide

Scripting User Guide

User Guide Start Page

Installation Instructions

How to use ET GeoWizards

ET GeoWizards and projections

ET GeoWizards and Geodatabase

How to register

ET GeoWizards toolbar

Main Dialog

Spatial Relations & Allocation

Allocate

Build Thiessen

Convex Hull
Concave Hull

Cluster Polygons

Spider Diagram

Spider Diagram Link

Import/Export

Google Earth general

Map To Google Earth

Import from Google Earth

Generate

Ungenerate

Point Wizards

Clean Point

Point Grid

Point Distance

Point Intersection

Snap Point Layer

Point Angle and Position

Reverse Geocoding

http://www.ian-ko.com
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/ToolBox/toolbox_userguide.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Scripting/scripting_userguide.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/pointDistance.htm

ET GeoWizards is a set of powerful functions that will help the ArcGIS users to manipulate data with easy. It

offers a lot of functionality not available as standard in ArcGIS. It also enables the ArcGIS users with ArcView

(ArcGIS Basic) licenses to perform some data processing functions currently available only in ArcEditor

(ArcGIS Standard) and ArcInfo (ArcGIS Advanced).

The main target of the software are the ArcView license holders, but it will be an asset for everyone using

ArcEditor and even ArcInfo

The functionality of ET GeoWizards is available in two different ways

Via the user friendly wizard type interface

Via a set of tools for Arc Toolbox (ArcGIS 9.0 or above) which can be used in the Model Builder,

Command Line or in Python scripts.

Until registered ET GeoWizards runs in DEMO mode.

The Demo mode has the following limitations

Many of the features are free - do not have any restrictions with the DEMO version. See ET

GeoWizards - free features for a list

The rest of the functions have restriction of 100 features in the layer to be processed

See How to Register ET GeoWizards for registration information

logo_h1.jpg (4952 bytes)

ET GeoWizards HOME

ToolBox User Guide

Scripting User Guide

User Guide Start Page

Installation Instructions

How to use ET GeoWizards

ET GeoWizards and projections

ET GeoWizards and Geodatabase

How to register

ET GeoWizards toolbar

Main Dialog

Spatial Relations & Allocation

Allocate

Build Thiessen

Convex Hull

Concave Hull

Cluster Polygons

Spider Diagram

Spider Diagram Link

Import/Export

Google Earth general

Map To Google Earth

Import from Google Earth

Generate

Ungenerate

Point Wizards

Clean Point

Point Grid

Point Distance

Point Intersection

Snap Point Layer

Point Angle and Position

Reverse Geocoding

Measure Points

Station Points

Thin Points

Points To Rectangles

Connect Points

Perpendiculars To

Polylines

ET GeoWizards is a set of powerful functions that will help the ArcGIS users to

manipulate data with easy. It offers a lot of functionality not available as standard in

ArcGIS. It also enables the ArcGIS users with ArcView (ArcGIS Basic) licenses to

perform some data processing functions currently available only in ArcEditor (ArcGIS

Standard) and ArcInfo (ArcGIS Advanced).

The main target of the software are the ArcView license holders, but it will be an asset for

everyone using ArcEditor and even ArcInfo

The functionality of ET GeoWizards is available in two different ways

Via the user friendly wizard type interface

Via a set of tools for Arc Toolbox (ArcGIS 9.0 or above) which can be used in the

Model Builder, Command Line or in Python scripts.

Until registered ET GeoWizards runs in DEMO mode.

The Demo mode has the following limitations

Many of the features are free - do not have any restrictions with the

DEMO version. See ET GeoWizards - free features for a list

The rest of the functions have restriction of 100 features in the layer to

be processed

See How to Register ET GeoWizards for registration information

http://www.ian-ko.com
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/ToolBox/toolbox_userguide.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Scripting/scripting_userguide.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/pointDistance.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/measurePoints.htm

Measure Points

Station Points

Thin Points

Points To Rectangles

Connect Points

Perpendiculars To Polylines

Disperse Points

Random Points On Polylines

Random Points In Polygons

Polyline Wizards

Clean Polyline

Clean Dangling Nodes

Clean Pseudo Nodes

Split Polyline With Layer

Split Polyline

Export Nodes

Generalize

Densify

Smooth

Snap Polyline Layer

Renode Polylines

Flip Polylines

PolylineZ characteristics

Clean Contour Gaps

Polygon Wizards

Clean Polygon

Eliminate

Dissolve Polygons

Clean Gaps

Advanced Merge

Build Polygons

Snap Polygon Layer

Get Adjacent Polygons

Generalize Polygons

Smooth Polygons

Aggregate Polygons

Create Centerlines

Partition Polygons

Polygon Characteristics

Polygon To Polyline Advanced

Fill Polygon Holes

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/measurePoints.htm

Conversion Wizards

Polygon To Polyline

Polygon To Point

Polyline To Point

Polyline To Polygon

Point To Polyline

Point To Polygon

Multipoint To Point

Shape Z (M) To Shape

Polygon Z (M) To Point

Polyline Z (M) To Point

Point Z (M) To Point

Point To Polygon Z (M)

Point To Polyline Z (M)

Point To Point Z (M)

Shape To ShapeZ

Point To Multipoint

Surface Wizards

Build TIN

Analyze TIN

Interpolate Contours

Triangulate Polygons

Calculate Surface Area

Interpolate Point Elevation

Features to 3D

ESRI TIN To PolygonZ

Geoprocessing Wizards

Clip layer

Batch Clip

Erase Layer

Batch Erase

Merge Layers

Split By Location

Split By Attributes

Transfer Attributes

Remove Exact Duplicates

Symmetrical Difference

Closest Feature Distance

Basic Wizards

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/convertPgZM2Pnt.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/convertPlZM2Pnt.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/convertPnt2PgZM.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/convertPnt2PlZM.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Triangulate_Polygons_Wizard.htm
file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Surface_Area_Wizard.htm

Create New Shapefile

Delete Multiple Fields

Sort Shapes

Move Shapes

Rotate Shapes

Scale shapes

Explode

Vector Grid

Closest Feature Distance

Order Fields

Redefine Fields

Copy Fields from layer

Miscellaneous Wizards

Cogo Inverse

Features To Envelopes

Features To Convex Polygons

Features To Circles

Features To Rectangles

Station Lines

Lines From Points, Direction and Distance

Points Along Polylines

Points To Pie Segments

Linear Referencing

Create Routes

Calibrate Routes

Locate Points

Locate Polygons

Dissolve Events

Concatenate Events

Union Events

Intersect Events

Point Z (M) To Point

Go to ToolBox Implementation Go to .NET Implementation

Converts a point Z (M) data set to a point feature class

Inputs:

A point Z (M) feature layer

Outputs:

New point feature class

New fields added to the point attribute table

[ET_ID] - the FID of original points. The values can be used to link the points back to the original

ponts Z(M).

[ET_Z] - is added and populated with Z values if the points are Z aware

[ET_M] - is added and populated with M values if the points are M aware

Notes :

The points can be converted back to Points Z(M) useng Point To Point Z(M) Wizard

ToolBox implementation

(Go to TOP)

Command line syntax

ET_GPPointZMToPoint <input_dataset> <out_feature class>

Parameters

Expression Explanation

<input_dataset> A PointZ(M) feature class or feature layer

<out_feature

class>

A String - the full name of the output feature class (A feature class with the same full name should not

exist)

Scripting syntax

ET_GPPointZMToPoint (input_dataset, out_feature class)

See the explanations above:

<> - required parameter

{} - optional parameter

.NET implementation

(Go to TOP)

AggregatePolygons(pInFC As IFeatureClass, sOutFName As String, dAggregateTol As Double, Optional dAreaTol As Double

= 0) As IFeatureClass

Copyright © Ianko Tchoukanski

Open Table of Contents

NOTE: ET GeoWizards 9.6 and above offer a single function that implements the entire process.

Contents:

The purpose

ET GeoWizards functions to be used

The Task

The Solution Proposed

How to get it done ?

A diagram of the process

The purpose:

Many questions similar to the one below have been asked on the ArcGIS forums:

"I am trying to divide county polygons into pieces, and I want to divide it using a road. (i.e. make 2

polygons out of each county, 1 which is north of I-80, and one which is south of I-80, which goes

through all of the counties in my dataset). Seems like a relatively simple operation, but I can't figure

out how to do it with ArcMap Editor. I thought I'd be able to do this with the GeoProcessing wizard,

but I can't, since one is a line shapefile, and one is a polygon shapefile."

Some of the answers (the only ones that gave some sort of a solution) were as follows:

"- select the polygon to be split

 - change the task to Cut Polygon Features

 - use the sketch tool

 - right-click on the road which will split the polygon

 - choose Replace Sketch

 - use F2 or Finish Sketch"

The answer above might do the job, but ONLY if a road goes through the whole county without having an

intersection with another road. In other words you need a single polyline that has its ends out of the polygon to be

split in order to use the above mentioned approach.

How do you feel about using the above procedure for splitting all the counties in a state with each road of the road

network - ONE BY ONE ? Another question is how successful this will be - not that many roads cross a county

without intersecting another road.

This document describes a procedure that will help you to split a polygon dataset with a polyline dataset using an

ArcView license and the functions available in ET GeoWizards.

ET GeoWizards functions to be used

Polygons To Polylines

Merge Layers

Clean Polylines

Build Polygons

Spatial Join - Standard ArcGIS function

Note that the links above are to the functions available via the interface of ET GeoWizards. If the procedure is to be

performed in the Model Builder - refer to the corresponding tools available in the ET GeoWizards ToolBox. If

performed via a VBA script - refer to ET GeoWizards Scripting

The task

We have four US counties and the highway network in the same area. The goal is to split (divide) the county

polygons based on the highway network.

Original polygons (few US counties) Split Polylines (some US highways)

The Solution proposed:

We have the original polygons (counties) and the polylines to be used for splitting (highways). What if instead of

trying to split the county polygons with the highway polylines we go a step back - get the counties boundaries

(Polylines), merge them with the highways (Polylines) and use the merged dataset to build a brand new polygon

dataset. Then we can get the original attributes from the County polygons to the resulting dataset with a simple

Spatial Join. The Process step by step:

Convert the original polygons to polylines -Polygons To Polylines function1.

Merge the polylines from the previous step with the split polylines - Merge Layers function2.

Build polygons from the merged dataset (the Clean option must be used) - Build Polygons function3.

Create label points for the newly built polygons - Polygon To Point function (label option)4.

Use Spatial Join (polygons to points) to get the attributes of the original polygons to the label points5.

Use Spatial Join (points to polygons) to get the attributes from the label points to the polygons (created in

point 3 above)

6.

Original Polygons Highway Polylines

Polygons To Polylines (Get the boundaries of the

original polygons as polylines)
Merge (County polylines with Highways)

Build Polygons (with clean option) No attributes at this

stage

Polygon To Points (with label option) - Get the label

points of the polygons created.

Get Attributes from original polygons (Spatial Join)

and attach them to the label points created.

Get Attributes from the Label Points (Spatial Join) and

attach them to the split polygons.

How to get it done?

ET GeoWizards offers three ways of achieving the above procedure

Via the User Interface - just perform the steps one by one using the Wizards available

With a simple VBA script - many of the functions of ET GeoWizards are available for use within VBA

scripts or custom applications written in any COM language. See an example with working code here

Create a Geoprocessing Model in the Model Builder (ArcGIS 9.0 and above only) using the ET

GeoWizards geoprocessing tools made available in version 9.2. A model performing the task is included

in the download of ET GeoWizards for ArcGIS 9.x

A diagram of the process:

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/Scripting/SplitPolygons_example.TXT

See ET GeoWizards UserGuide for more information

For any comments and enquiries contact: webmaster@ian-ko.com

All ESRI products mentioned are trademarks of Environmental Systems Research Institute, Inc.

Copyright: Ianko Tchoukanski

file:///C:/DOCUME~1/Ianko/LOCALS~1/Temp/ETGeoWizards.chm/UserGuide/et_geowizards_userguide.htm
mailto:webmaster@ian-ko.com

	ET GeoWizards
	Instalation Instructions
	How to use ET GeoWizards
	ET GeoWizards in .NET
	How To Register
	ET GeoWizards and projections
	ET GeoWizards and geodatabase
	ET GeoWizards Toolbar
	Main Dialog
	ET GeoWizards Functions
	Spatial Relations & Allocation
	Near Feature
	Allocate
	Concave Hull
	Convex Hull
	Cluster Polygons
	Thiessen Polygons
	Spider Diagram
	Spider Diagram Attribute Link
	Find Closest Point
	Connect to Closest Point
	Connect Unstructured Points

	Import-Export
	Ungenerate
	Generate
	Import from Google Earth
	Map To Google Earth
	Google Earth General
	Export To Google Earth

	Sampling
	Vector Grid
	Point Grid
	Random Points On Polylines
	Random Points In Polygons
	Point Grids in Polygons
	Square Grids in Polygons
	Uniform Points in Polygons
	Create Tiles

	Point
	Clean Point
	Connect Points
	Disperse Points
	Perpendiculars To Polylines
	Point Angle and Position
	Point Global Snap
	Point Intersection
	Points To Rectengles
	Reverse Geocoding
	Station Points
	Thin Points
	Points to Regular Polygons

	Polyline
	Buffer Polylines
	Clean Contour Gaps
	Clean Polyline
	Clean Dangling Nodes
	Clean Pseudo Nodes
	Densify
	Export Nodes
	Flip Polylines
	Generalize
	Polyline Global Snap
	PolylineZ Characteristics
	Renode Polylines
	Smooth
	Split Polyline
	Split Polylines With a Layer
	Polyline Characteristics
	Flipe PolylineZ

	Polygon
	Advanced Merge
	Aggregate Polygons
	Build Polygons
	Clean Gaps
	Clean Polygon
	Create Centerlines
	Dissolve
	Eliminate
	Generalize Polygons
	Get Adjacent Polygons
	Partition Polygons
	Polygon Global Snap
	Smooth Polygons
	Polygon Characteristics
	Polygon To Polyline Advanced
	Fill Polygon Holes

	Conversion
	Polygon To Polyline
	Polygon To Point
	Polyline To Point
	Polyline To Polygon
	Polyline To Multipoint
	Point To Polyline
	Point To Polygon
	Point To Multipoint
	Point To Point Z (M)
	Multipoint To Point
	Multipoint To Polyline
	Shape Z (M) To Shape
	Shape To ShapeZ

	Surface
	Build TIN
	Analyze TIN
	ESRI TIN To PolygonZ
	Features To 3D
	Interpolate Contours
	Point Interpolate Z

	Overlay
	Clip
	Batch Clip
	Erase
	Batch Erase
	Merge Layers
	Split By Location
	Split By Attributes
	Transfer Polygon Attributes
	Remove Duplicates
	Symmetrical Difference
	Spatial Join

	Basic
	New Feature Class
	Sort Shapes
	Move Shapes
	Rotate Shapes
	Scale Shapes
	Explode
	Closest Feature Distance
	Fix Geometry

	Fields
	Delete Multiple Fields
	Order Fields
	Redefine Fields
	Copy Fields
	Rename Field
	Add Attribute Index
	Add Spatial Index
	Calculate Area
	Calculate Length
	Calculate Values
	Point Coordinates
	Polygon Coordinates
	Polyline Coordinates

	Linear Referencing
	Create Routes
	Calibrate Routes
	Locate Points
	Locate Polygons
	Dissolve Events
	Concatenate Events
	Union Events
	Intersect Events

	Miscellaneous
	Cogo Inverse
	Features To Envelopes
	Features To Circles
	Features To Convex Polygons
	Features To Rectangles
	Lines from Points Direction and Distance
	Points Along Polylines
	Station Lines
	Points to Pie Segments
	Polygons to Equal Area Circles
	Polygon to Max Inscribed Circle

